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and industrially significant quantities of enzyme [8]. 
Microorganisms are genetically the most diverse 
group due to high metabolic flexibility and multiple 
enzyme based reactions which in turn catalyze 
complex structures like cellulose in D-glucose with 
the help of enzymes called cellulase. Microor-
ganisms have high impact on biotechnological 
applications due to these significant features [7]. 
Bacteria are emerging as hotspots of versatility and 
variety genetically and functionally. They can 
degrade lignocellulosic materials involving complex 
system of lignocellulolytic enzymes [9]. 

The complex cellulase enzyme system consists 
of three enzymes which are endoglucanases, 
exoglucanases and cellobioases [10]. Endogluca-
nases are β-1,4-D glucan-4-glucano-hydrolase and 
carboxymethyl cellulase, while exoglucanases are β-
1,4-D glucan-4-gluco-hydrolase and cellobiohyd-
rolase and cellobioases termed as CBH and 
cellobioases are β-D glucoside glucohydrolase and 
β-1,4-D-glucosidase, all free enzymes present in 57 
of glycosyl hydrolase families [11; 12]. Cellulolytic 
enzymes would be of great industrial use with the 
promising environmental and economical 
sustainability if their media could be improved with 
the proper optimized conditions for achieving best 
enzyme titer that eventually lessens its cost [13]. 

The optimization of cellulase production and 
selection of ideal substrate are major and important 
steps having significant enzyme titer at the end. 
Limited information was available for Bacillus 
species enzymology and its cellulytic activities. 
Bacterial cellulases usually reported to be 
extracellular and production can be optimized by 
adjusting nutritional parameters and physical 
properties like temperature and pH, etc. The major 
factor has always been carbon source but nitrogen 
phosphorus and metal ions sources are also of great 
importance [14]. 

Determination of cellulolytic potential of 
microorganism is carried out via fermentation 
process. There are two types used commonly one is 
solid state fermentation and second is submerged 
fermentation. Solid state fermentation is carried out 
in the absence of free liquids as microorganisms 
grow on firm surfaces holding up as substrates [15]. 
This type has been used mostly for filamentous 
fungi where solid substrate acts as natural surface 
for filamentous growth of fungi [16]. 

Submerged fermentation usually denoted as 
SMF is a type of fermentation which requires large 
amount of liquid substrates as compared to solid 
state fermentation. These may be water, molasses or 

broths. The products which mainly are secondary 
metabolites or enzymes are secreted in and collected 
form liquid media. Continuous replenishment of 
substrates or nutrient may be required according to 
the use of substrates in fermentation process. 
Microbes which need high moisture content for their 
growth such as bacteria usually best for this type of 
fermentation. The advantage of this technique is 
easy purification and product recovery [17; 18]. 
Submerged fermentation is preferred for bacterial 
cultures due to ease of purification, sterilization and 
process control. The culture conditions and media 
optimization are the major steps to be considered 
[19]. During early 1970’s, cellulase production was 
started commercially via submerged fermentation. 
Mega scale use of cellulase as animal feed additive 
and for stonewashing denim was practiced in 
industry during 1980’s [20]. 

Formulation of media is specific for the 
organism and its optimization is necessary for best 
production of required substance hence any general 
media composition cannot be used for optimum 
growth and cellulase production [21]. Response 
surface methodology (RSM) is the statistical 
analysis modeling used to optimize and evaluate 
many biotechnological processes and enzymatic 
hydrolysis [22]. RSM is affected by many 
parameters and variable factors affecting the results 
and then these are optimized for the best conditions 
using different designs of RSM with the interpo-
lation of first or second polynomial equations in 
sequential testing procedure [23; 24]. This techni-
que, RSM integrates mathematical and statistical 
approaches and analyzes defined independent 
parameters on response without having any previous 
information about the relation between response 
function and variable parameters [25-27]. RSM is 
being used now statistically, as an appropriate 
methodology for experiment designing, statistical 
model building, evaluation of factors affecting the 
optimum conditions for required response and in 
turn, decreasing the number of experiments for the 
required response [28]. In biotechnological 
processes, RSM evaluate the optimum conditions 
for the growth of microorganism and product 
formation [29; 30]. Here, RSM was used to 
determine optimal conditions for novel bacterial 
strain Bacillus parlichniformus and the factors that 
affect the response of cellulase production. Peanut 
shell waste has been taken as carbon source and 
cellulolytic potential of Bacillus parlichniformis 
was investigated in submerged fermentation with 
optimal medium conditions. 
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Materials and methods 
 
Object. Samples of Bacillus paralichniformis 

isolated from soil were provided by the Laboratory 
of Microbial Biotechnology, Department of 
Biotechnology, University of Sargodha. The strain 
was maintained on nutrient agar slants and used for 
cellulase production in subsequent study. 

Enzyme production. Submerged fermentation 
was performed for the production of enzyme having 
medium ingredients of peanut shell waste, yeast 
extract and MgSO4. Concentration of these 
ingredients was optimized as per experimental 
design. The medium components were sterilized and 
inoculated with 1ml of 24 h old vegetative cell 
culture and placed in a shaking incubator for 24 h 
with a shaking speed of 120 rpm at 35C. Culture 
broth was consequently centrifuged at 10,000 x g 
and 4C for 10 min. Centrifuged pure extract 
without cellular material was used as source of 
crude enzyme extract for further processing.  

Cellulase assay. Carboxymethyl cellulase 
(CMCase) and filter paper activity (FPase) was 
estimated as described in our earlier reports [31]. 

Saccharification of peanut shell. In 500 mL 
conical flask, 100 mL of crude cellulase enzymes 
with 4% substrate was incubated at 50 °C for 
various time intervals. After termination of 
enzymatic hydrolysis, centrifugation of material was 
performed at 10,000 rpm for 10 min. 
Saccharification (%) was calculated using the 
following formulae [32]. 

 
Saccharification (%) =  

=  × 100 
 
Experimental design. Box–Bhenken design 

(BBD) was used for optimization of medium 
components in this study. The independent and 
noteworthy variables used were peanut shell 
(substrate) concentration (X1), yeast concentration, 
(X2) and MgSO4 (X3) and their levels are 
mentioned in Table 1. The relation between actual 
and coded values was described by the following 
equation; 

 
xi= , 

 
where xi and Xi are the coded and actual values of 
the independent variable, Xo is the actual value of 
the independent variable at the center point and DXi 
is the change of Xi. The response is calculated from 

the following equation using STATISTICA 
software (99th ed.). 

 
Y= βO+ β1X1+ β2X2+ β3X3+ β11X1

2+β22X2
2+ 

β33X3
2+β12X1X 2 +β13X1X3+β23X2X3 

 
Y is the response, X1, X2 and X3 are the 

independent variables, βO is the intercept, β1, β2 and 
β3 are linear coefficient, β1

1, β2
2 and β3

3 are square 
coefficients, β12, β13 and β23 are interaction 
coefficients. 

 
Results and discussion 
 
Cellulases were produced by Bacillus 

paralichniformis in SMF. Media optimization for 
best enzyme titer was carried out using three 
independent variables such as substrate (peanut shell 
waste) concentration (X1), Yeast extract (X2) and 
MgSO4 (X3) and their levels are mentioned in Table 
1. The response was calculated by second degree 
polynomial regression equation (Eq. 3; 4) using 
Minitab software version 9.  

With the optimized conditions of media, the best 
enzyme production obtained for CMCase was 
12.838 IU with optimized conditions of substrate 
concentration of 3 (%), yeast extract 0.45 (%) and 
MgSO4 0.01(%)after 24 h of incubation. This value 
was in close proximity with the predicted value of 
12.38850 IU as shown in table 2.Highest FPase 
production (40.956 IU) was observed with substrate 
concentration of 3 (%), 0.45% of yeast extract and 
MgSO4 concentration of 0.3 (%) having predicted 
value of 31.5108 IU.  

 
Table 1 – Coded and actual levels of the factors for three 
factors Box-Behenken design 

 
Independent 
variables 

Symbols Coded and actual values
-1 0 +1

Peanut shell waste X1 0.5 1.75 3
Yeast extract X2 0.1 0.45 0.8
MgSO4 X3 0.01 0.155 0.3

 
 
CMCase (IU) = -3.55 + 7.13 X1 + 18.15 X2 
+ 12.96 X3 – 0.574 X1*X1 – 19.62 X2*X2 – 

64.2 X3*X3 – 3.366 X1*X2 – 4.59 X1*X3 
+ 20.59 X2*X3Equation (3) 

 
FPase (IU) = 10.7 + 4.5 X1 + 30.4 X2 – 40 X3 

+ 1.36 X1*X1 – 40.4 X2*X2 -141 X3*X3 – 9.8 X1*X2 
+ 17.1X1*X3 + 88 X2*X3Equation (4) 
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Table 2 – Cellulase production by B. paralicheniformis using Box-Behenken design from peanut shells 
 

Run # X1 X2 X3 CMCase activity (IU) FPase activity (IU) 

Observed Predicted Residual Observed Predicted Residual

1 0.5 0.45 0.01 3.204 3.49975 -0.29575 7.238 16.68313 -9.4451
2 1.75 0.8 0.01 5.04 4.61963 0.420375 17.979 8.13738 9.84162
3 0.5 0.45 0.3 3.055 3.50450 -0.44950 7.238 6.48912 0.74888
4 3 0.8 0.155 6.557 7.42688 -0.86987 11.746 20.83875 -9.0927
5 0.5 0.8 0.155 3.024 3.14863 -0.12462 10.2 10.59650 -0.3965
6 1.75 0.1 0.3 4.085 4.50538 -0.42037 0.901 10.74263 -9.8416
7 3 0.45 0.3 9.358 9.06225 0.295750 40.956 31.51088 9.44513
8 3 0.1 0.155 12.043 11.91838 0.124625 36.45 36.05350 0.39650
9 1.75 0.45 0.155 9.358 9.36167 -0.00366 17.541 21.84300 -4.3020

10 1.75 0.45 0.155 9.019 9.36167 -0.34266 25.063 21.84300 3.22000
11 3 0.45 0.01 12.838 12.38850 0.449500 28.592 29.34088 -0.7488
12 1.75 0.1 0.01 7.682 8.25613 -0.57412 24.084 23.73163 0.35237
13 1.75 0.8 0.3 5.623 5.04888 0.574125 12.75 13.10238 -0.3523
14 1.75 0.45 0.155 9.708 9.36167 0.346333 22.925 21.84300 1.08200
15 0.5 0.1 0.155 2.62 1.75013 0.869875 17.709 8.61625 9.09275
 
 
All the data was statistically analyzed using 

analysis of variance for significance of the model 
(Table 3). The significance of model and response 
for coefficients is mainly dependent on F-value and 
P-values. The higher the F-value resulting in lower 
P-value described the high accuracy and signifi-
cance of regression model [33]. Therefore, higher 
computed Fischer’s F-value for CMCase was 26.07 
and for FPase 1.14 with P-value 0.001 and 0.468 
respectively. The model for CMCase was highly 
significant while FPase was found not significant. 
The fitness of model was further analyzed by the 
determination coefficient R2 for CMCase and FPase. 
The R2 value for CMCase and FPase were 97.91% 
and 67.17%, which revealed that 2.09% and 32.67% 
variation was not determined by model respectively. 
Higher value of R square of CMCase showed the 
accuracy of the model (Figure 1). 

Interaction effect of parameters. The interaction 
effect of substrate concentration (X1), yeast extract 

(X2) and MgSO4(X3) has been described in contour 
plots. Different pattern of colors in these plots 
depicted levels of enzyme production with one 
variable constant or zero level and two parameters 
with different levels (Figure 2). These plots 
indicated that each parameter significantly affect 
enzyme production. 

The results were validated further by repeated 
experiments of optimized values of significant 
parameters as predicted in desirability diagrams 
(Figure 3).Results were in the close range with 
predicted values. This figure depicted that at 
optimized levels of peanut shell waste 1.75%, yeast 
extract 0.45% and MgSO4 0.155%, the maximum 
CMCase production was 13.678 IU which was 
confirmed by repeated experiments. The predicted 
optimized value for FPase was 1.75% peanut shell 
waste, 0.45% yeast extract and 0.155%MgSO4 
yielded 41.016 IU enzyme production which were 
almost similar after experiments.  
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Table 3 – Analysis of variance for cellulase production from B.paralichniformis in submerged fermentation 
 

CMCase (IU) 

Sources DF Adj SS Adj MS F value P value

Model
Linear 

9 
3 

158.320 
114.650 17.591 38.217 26.07 

56.64 
0.001
0.000 

X1 1 104.351 104.351 154.66 0.000

X2 1 4.783 4.783 7.09 0.045

X3 
Square 

1 
3 

5.516
27.855 

5.516
9.285 

8.18 
13.76 

0.035
0.008 

X1
2 1 2.972 2.972 4.41 0.090

X2
2 1 21.329 21.329 31.61 0.002

X3
2 

2 Way 
interaction 

1 
3 

6.736 
15.815 

6.736 
5.272 

9.98 
7.81 

0.025 
0.025 

X1*X2 1 8.673 8.673 12.85 0.016

X1*X3 1 2.774 2.774 4.11 0.098

X2*X3 1 4.368 4.368 6.47 0.052

Error 
Lack of fit 
Pure error 

Total 

5 
3 
2 

14 

3.374
3.136 
0.237 

161.693 

0.675 
1.045 
0.119 

 
8.81 

0.104 
 
 

FPase (IU) 

Sources DF Adj SS Adj MS F value P value

Model
Linear 

9 
3 

1164.71
829.64 

129.41
276.55 

1.14 
2.43 

0.468
0.181 

X1 1 709.87 709.87 6.24 0.055

X2 1 87.58 87.58 0.77 0.421

X3 
Square 

1 
3 

32.19
142.35 

32.19
47.45 

0.28 
0.42 

0.618
0.749 

X1
2 1 16.76 16.76 0.15 0.717

X2
2 1 90.37 90.37 0.79 0.414

X3
2 

2 way 
interaction 

1 
3 

32.51 
192.72 

32.51 
64.24 

0.29 
0.56 

0.616 
0.662 

X1*X2 1 73.92 73.92 0.65 0.457

X1*X3 1 38.22 38.22 0.34 0.587

X2*X3 1 80.59 80.59 0.71 0.439

Error 
Lack of fit 
Pure error 

Total 

5 
3 
2 

14 

569.22
539.18 
30.05 

1733.93 

113.84 
179.73 
15.02 

 
11.96 

 
0.078 

 
 



34 Utilization of peanut shells as substrate for cellulase production in submerged fermentation through Box-Behnken Design

Int. j. biol. chem. (Online)                                               International Journal of Biology and Chemistry 12, № 2, 28 (2019)

 
Fiigure 2 – Con

peanut shells
ntour plots for
s by Bacillus p

r CMCase (IU
paralichenifor

 

U) and FPase (I
rmisin submer

IU) productio
rged fermenta

on from  
ation 

 



35Muhammad Irfan et al.

Int. j. biol. chem. (Online)                                               International Journal of Biology and Chemistry 12, № 2, 28 (2019)

 

 

 
 
Sacchar

produced f
merged ferm
nut shell wa

rification. Th
from Baccilu
mentation w
aste. The exp

Figure 3

he crude enz
us paralichn
as applied to
periment wa

3 – Desirablity

zyme which 
niformis in 
o hydrolyze 
as carried ou

y of CMCase a

was 
sub-
pea-

ut for 

diffe
ted 
prod
time

and FPFase pr

ferent time p
the maximu

duction was 
e of incubatio

roduction 

periods and r
um total suga

observed at
on declined 

 

 

results (Figu
ar (38.0 ± 0
t 8 h. Furth
sugar produc

ure 4) depic-
0.23 mg/mL)
her increased
ction. 

-
) 
d 



36 Utilization of peanut shells as substrate for cellulase production in submerged fermentation through Box-Behnken Design

Int. j. biol. chem. (Online)                                               International Journal of Biology and Chemistry 12, № 2, 28 (2019)

 
As we k

and now t
energy sour
for novel 
renewable s
wastes for 
strain. Bac
potential of
substrates li
cotton stalk
Saccharum 
[31] throu
Another s
CMCase f
bagasse thr
[38]. Bacill
Labeo ro
producing 
submerge fe

Bacillus
sugarcane b
13.6 IU/m
fermentation
from the 
enduglucan
bagasse as 
type of su
production 
previous stu

Figu

know cellula
the increasi
rces motivat
and better 
sources of s
the producti
cillus subti
f cellulase p
ike saw dust 
k, peanut sh

spontaneium
ugh respon
tudy report
from Bacill
rough RSM 
lus aquimar
hita has 
potential o

ermentation 
s pumilis st
bagasse as 
mL/min p
n [40]. Aer

gut of 
ase titer of 
substrate [41
ubstrate sig
in submerge
udy [42]. 

ure 4 – Sugars

ase has majo
ing demand
te biotechno
microbial s
ubstrate, lik
ion of enzym
ilis K18 h
roduction us
[34], eucaly

hells [36], po
m [37] and b
nse surface
ted 0.037 
lus sp. C1
in submerg

ris isolated 
maximum 

f 437.3833 
[39]. 
rain had po
carbon sour

production 
romonas bes
Labeo roh

f 3.766 IU 
1]. Medium 

gnificantly a
 fermentatio

s released afte

or industrial 
ds of renew
ologist to se
strains and 
ke agro-indus
mes, using n
had tremend
sing a variet
yptus leaves 
otato peels 
banana pedu
e methodol

IU/mL/min
1AC5507 u
ged fermenta
from the gu

endogluca
IU/mL/min

otential of u
rce for CMC

in subm
stiarum isol
hita gave 
using sugar
components

affects cellu
n as describe

 

 
er enzymatic h

 

role 
wable 
earch 
easy 
strial 
novel 
dous 
ty of 
[35], 
[46], 
uncle 
logy. 

n of 
using 
ation 
ut of 
anase 
n in 

using 
Case 

merge 
lated 

the 
rcane 
s and 
ulase 
ed in 

pers
econ
a n
cellu
furth
whi
peri

prod
fica
max
incu
Bac
sacc
med
prod
rele
straw
und
enzy
been
Asg
max

that

hydrolysis at v

The ongoing
spective of e
nomical agro

novel strain 
ulase enzym
her used fo
ch gave max
iod (Figure 4
Another st
duction at 6 
tion of S

ximum total 
ubation at 50
cillus subtilis
charification 
diated sacc
duced maxim
ased after 6 
w fermente

der optimized
yme concen
n resulted in

ghar et al. als
ximum sacch
 
Conclusion
 
Results obta

t the novel s

 

various time p

g study has b
easily availa
o waste, i.e. 
of Bacillus

me produced 
r saccharific
ximum sugar
4). 
tudy repor
h for sugar b

Saccharum 
sugars of 12
0°C [37]. Ce
s K-18 has 

of pine n
charification 
mum total s
h of incubati

ed with Sac
d condition o
ntration and 
n 40.15 % o
so reported 8
harification o

ained within 
strain Baccilu

 

period 

been carried o
able and ren

peanut shel
s paralichnif
from this ba
cation of pe
r after 8 h o

rted maxim
beet pulp [43
spontaneum

2.71 mg/mL 
ellulase prod
stimulated t
needles [44]

by Bacil
sugars of 31
ion at 50 °C 
ccharomyces

of 2 % wheat 
6 h of time
of saccharifi

8 h of incubat
of wheat straw

the current 
us paralichn

out with this
newable plus
l waste with
iformis. The
acterium was
eanut shells,
of incubation

mum sugar
3]. Sacchari-

m releasing
after 20 h of

duced by the
the 54.389%
]. Cellulase
llus cereus
1.42 mg/mL
[45]. Wheat

s cerevisiae
straw, 0.5%

e period has
ication [33].
tion time for
w [46]. 

study prove
niformus has

s 
s 
h 
e 
s 
, 
n 

r 
-
g 
f 
e 

% 
e 
s 
L 
t 
e 

% 
s 
. 
r 

e 
s 



37Muhammad Irfan et al.

Int. j. biol. chem. (Online)                                               International Journal of Biology and Chemistry 12, № 2, 28 (2019)

good industrial potential for cellulase production to 
perform cellulolytic functions, and it can also be 
used to convert lignocellulosic biomass into ethanol 
by saccharification. 
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