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Machine learning for brain signal analysis

Ab ract. Machine learning (ML) is an effective tool for analysing signals from the human brain. Machine 
Learning techniques provide new insight into the under anding of brain function in healthy subjects and 
patients with neurological and mental disorders. Here we introduce the application of machine learning to 

resonance imaging (fMRI) and Electroencephalography (EEG). The article provides a brief overview of the 
theoretical concept of machine learning and its types: supervised, unsupervised and reinforcement learning. 
The potential of machine learning applications in pathology is discussed. Differences between EEG and 
fMRI methods regarding machine learning application and an overview of the techniques employed in 
different research udies are reviewed. The new machine learning methods invented for analysis of brain 
signals in the re ing ate and during the performance of the different cognitive tasks would be useful and 
worth considering in other domains, not limited to medicine.
Key words: EEG, fMRI, machine learning, MVPA, brain signal analysis.

Introduction

Machine learning applications are effective in 
solving many modern problems. Its widespread use 
has induced the emergence of a large amount of lit-
erature. The present article aims to provide a brief 
introduction to machine learning techniques and its 

fMRI and EEG signals. 
First, we provide a brief overview of the theo-

retical concept of machine learning. Machine learn-

designed so that machines can computationally ef-

from data. It is a relatively new discipline, which lies 

computer science. The majority of machine learning 
techniques are based on the following mathematical 
realms: linear algebra, analytic geometry, matrix de-
composition, probability theory, vector calculus and 
optimization [1].

A learning process outcome would be called a 
model. Machine learning models describe relation-
ships within observed data. A typical dataset that is 
considered in ML problems consists of dependent 
and independent variables. Independent variables 
can also be referred to as features, while a dependent 

variable, which depends on independent variables, is 
referred to as a target.

Machine learning techniques are based on regres-
sion, dimensionality reduction, density estimation 

would map inputs x to corresponding values y, where 
x represents feature matrix and y represents a target 
vector [1]. The difference is that in regression the out-

the outputs are discrete (or categorical) values. The 
key objective in dimensionality reduction problems 
is to reduce the number of features in the feature ma-
trix, with minimum loss of potentially valuable infor-
mation [1]. The key objective in density estimation 
problems is to describe a dataset from the perspective 
of a probability distribution [1].

Nowadays there are many different types of 
learning that exist in Machine learning. Traditionally, 
machine learning approaches are divided into three 
broad categories: supervised, unsupervised, and re-
inforcement learning. Reinforcement learning is a 
type of learning, in which an ‘agent’ learns how to 
act in an environment by continuously getting ‘feed-
back’ from that environment. In supervised learning, 
a model is trained on labeled data to learn a relation-
ship between features and a target variable. Next, to 
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evaluate the performance of the model, the model is 
tested on previously ‘unseen’ data. Model training is 
the process during which a machine learns patterns 
and structure from available data. In contrast to the 
supervised learning approach, the unsupervised ap-
proach works with unlabeled data, and a model is built 
to discover patterns and structures within the data. 
Supervised learning is used in regression and clas-

is used in dimensionality reduction, density estima-
tion, anomaly detection, autoencoding and cluster-
ing techniques. In supervised learning, we are able 
to evaluate our model by comparing predicted and 
actual labels of test data. In contrast, in unsupervised 
learning there are no labels to predict, and, therefore, 
there is no direct evaluation for unsupervised learn-
ing. However, an output of an unsupervised learning 
task is often used to construct an input (informative 
features) to the subsequent supervised learning task, 
and it can be evaluated via results of the subsequent 
supervised learning task and answer the question, 
“Was the pattern discovered in unsupervised learning 
useful?” [2].

Machine learning application in clinics

Medicine and pathology in particular are arg-
Wuably the most promising domains to apply ma-
chine learning: what could be more inspiring than 
contributing to saving millions of lives from complex 
diseases or improving the quality of life of those who 
are paralyzed? With each year there is an increased 
number of publications presenting applications of 
machine learning algorithms to medical data, yet this 
has not resulted in many meaningful contributions 
to clinical care [2]. The main reason is possibly low 
AI/ML algorithms trustworthiness, which comprises 
several parts: is the algorithm accurate and robust, 

how interpretable are these decisions to the medical 
community [3]. While high accuracy and robustness 
(for example to low quality data) are well-known 
desired properties of AI/ML systems in all applied 

-
cially in a clinical setting. Another factor that makes 

is that acquisition of data is a costly and lengthy pro-
cess. For example, for brain signal analysis to acquire 
data using fMRI, one must have an fMRI scanner, 
which is considered to be expensive, and not many 
research groups can afford it. Comparatively, get-
ting other types of data is much easier. For example, 

to build its own recommendation system, because it 

Both supervised and unsupervised learning are 
used in pathology and human functions. One example 
is analysis of data obtained from patients with Heart 
Failure with preserved Ejection Fraction (HFpEF) 

-
tiple dominant pathophysiologic processes. The idea 
of the analysis was to group patients on the basis of 
qualitative echocardiographic and clinical variables. 
Initially, there were 67 different features; after remov-
ing highly correlated features, there were 46 predic-
tors (features). Next, a regularized form of a cluster-
ing algorithm was applied: clusters were determined 
by using multivariate Gaussian distributions and us-
ing means and standard deviation assigned to each 
feature [2]. The clusters were formed by calculating 
a joint probability of membership for each patient. 
Results of the comparison of the calculated clusters 
have demonstrated the differences across many phe-
notypic variables. These phenotypic clusters resulted 
in becoming features in the supervised learning mod-
el that predicted survival of HFpEF patients.

Study of signals of the brain, the most complex 
structure in the body, may help understand brain 
functioning in normal versus neurological or mental 
disorder brain conditions. Many studies use super-
vised learning approaches to diagnose a brain func-
tion pathology or classify symptom severity from 
concurrent neuroimaging data. Among brain function 

autism, depression, and schizophrenia [4]. Moreover, 
machine learning technology is able to detect devia-
tions from normative development trajectories as risk 

individual based on brain activity network patterns 
can be used to elucidate atypical development in chil-
dren and adults with Tourette syndrome [4]. There is 
a growing number of studies using brain connectivity 
approaches [5]. This method is based on graph theo-
ry and determines functional, structural, and causal 
dynamical networks. Therefore, brain connectivity 
measurements appear to serve as variables to deter-
mine whether it is possible to predict subsequent di-
agnosis or treatment outcomes.

Apart from supervised learning in brain signal 
analysis, an unsupervised learning approach can be 
used to cluster patients into subgroups with categori-
cally different patterns of neuroimaging features. 
The application of reinforcement learning is also 

worth mentioning that the Reinforcement learning 
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approach itself gets its aspiration from the cognitive 

There are different techniques for measuring and 
mapping brain activity. These include Electroenceph-
alography (EEG), functional magnetic resonance im-
aging (fMRI), Positron emission tomography (PET) 
and Magnetoencephalography (MEG). Our focus in 
this article is on the two most popular noninvasive 
and safe methods to obtain brain signals during the 
cognitive task or resting states: fMRI and EEG.

Machine learning in functional MRI signal 
analysis

FMRI measures brain neural activity via mag-
netic properties of blood, namely, the blood-oxygen 
level dependent (BOLD) signal. The method is based 
on the fact that with an increase in the activity of a 

also increases, which means that the parameters of 
blood movement and level of oxygen in the vascu-
lar bed change. A typical neuroimaging experiment 
holds for several sessions (runs) per subject. In fMRI, 
the whole brain is scanned for the duration of a ses-
sion, resulting in many brain images per time unit, 
called volumes. The scanning rate affects the spatial 
and temporal resolutions of images. FMRI has good 
spatial resolution and a satisfactory level of temporal 
resolution, even though these spatial and temporal 
resolutions are attained at the expense of each other.

For one to perform an effective fMRI analysis, 
-

cessing stage. Preprocessing typically includes Re-
aligning and Unwarping the Data, Slice-time correc-
tion, Co-registration, Segmentation, Normalization, 
and Smoothing steps. The last Smoothing step is in 
many cases omitted to avoid distortion of neural ac-
tivity intensity per voxel.

analysis of fMRI data were univariate and mass-
univariate. In univariate analysis, an amplitude of 
a signal elicited from a voxel, which is a 3-dimen-
sional pixel of a brain (usually 3mm*3mm*3mm), is 
analyzed in the context of each voxel separately. In 
mass-univariate analysis, a statistical inference about 
brain region responses to particular stimuli is made 
on the basis of the average activation value of a re-
gion calculated using univariate analysis conducted 
for each voxel in that region of a brain. Nowadays 
univariate and mass-univariate analysis is enhanced 

concept of which appeared in the early 2000s. It also 

operates at a level of a voxel, however, the MVPA 
approach considers the fMRI analysis problem as a 

has become a new paradigm for fMRI analysis in the 
world of neuroimaging. 

The MVPA approach allows to ‘decode’ fMRI 
signals and maps them to sensory and motor events 
or participant’s mental state [8]. A brain activity that 
was triggered by a certain experimental condition is 
recorded and represented as a pattern of voxels for 
that condition. In MVPA, each voxel constitutes a 
dimension in space, correspondingly, every pattern 
of voxels i.e., brain activity can be represented as a 
dot in that voxel space. Thus, many points (voxel 
patterns) form clouds in the voxel space. Figure 1 
shows a simple voxel space structure: the number of 

-
resent condition A and blue dots represent condition 
B. The plane separates two clouds. Such represen-
tation of fMRI data makes it possible to apply dif-
ferent supervised methods, such as support-vector 
machine (SVM) and linear discriminant analysis 
(LDA).

Functional MRI analysis is complicated by the 
vast number of voxels that are treated as features 

of “Curse of dimensionality”: a number of avail-
able voxels reaches more than 30,000, whereas the 
number of trials (samples) are at the highest 100 [9]. 
Different approaches are employed to reduce data 
dimensionality and thus select only ‘useful’ voxels. 
Two of the main standard approaches are region of 
interest (ROI) and Searchlight. Regions in ROI can 
be selected on the basis of anatomical structure, or 
on the results of application of the ANOVA method. 
In the latter, voxels are selected on the ANOVA test 
of response of each voxel to the experimental con-
ditions [10]. After ROI selection, a functional con-
nectivity matrix can be calculated and vectorized in 
different ways. Obtained low-dimensional feature 
vectors are then used in ML models as predictors of 
various diseases, see for example [11].

-
quently trained on a small spherical cluster of voxels, 
centered at each voxel of the indicated areas (usually 

for each spherical cluster are calculated and are as-
signed respectively to the central voxels of the clus-

subsets are selected or the central voxels of the clus-
ters of these subsets are selected [12].
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Common statistical approaches to dimensional-
ity reduction, like ICA and PCA can also be success-
fully applied to select features. An example of ICA 
application is Hunyadi’s [12] study of localization 
of epileptogenic zones, where ICA was applied to 
select epileptic components that later have been fed 

approaches could be applied to fMRI-based connec-
tivity matrices resulting in informative features for 
depression diagnostics [13].

-
tion method called SBFE: patients with complex psy-

search coupled with whole-brain machine-learning. 
SBFE showed 91% accuracy in classifying schizo-
phrenia patients with and without OCD [14]. They 
state that in contrast to standard ROI driven analy-
ses, SBFE was able to classify schizophrenia patients 
with and without OCD with 91% accuracy. Thus, the 
application of this approach can have promising re-
sults when needed to delineate patients of one com-
plex psychiatric morbidity with the presence of dif-
ferent symptoms.

De Martino [15] in his work has introduced re-
cursive feature elimination (RFE) strategy. It uses 
SVM reclusively to remove irrelevant voxels and 
assess informative spatial patterns. The method has 
increased sensitivity for discriminative patterns.

According to Duff [16], the number of pre-pro-
cessing and feature generation methods impacts pre-

diction accuracy more consistently than the choice of 

In many projects, the most popular choice of 
learning algorithms in fMRI analysis is SVM [17]. 
Among other different machine learning approaches 
in MVPA are Clustering algorithms [18], deep neural 
networks [19], and Representational Similarity Anal-

to make deep neural networks models on fMRI data 
interpretable for particular clinical diagnostics tasks, 
see [21-22] for details. An advantage of using deep 
learning over non-deep learning approaches is that 
features can be automatically learned by neural net-
works, thus eliminating the need to conduct manual 
feature extraction and selection steps. Feature selec-
tion and extraction steps are performed by special 
structures of deep learning architecture, called con-
volutional and pooling layers.

In fMRI, due to the scarcity of samples compared 
to the number of features, the cross-validation tech-
nique is often used. Cross-validation is one of the ML 

by iteratively splitting data into different training/
-

all training sample of the model. There are different 
strategies for selecting the validation fold. One of the 
popular strategies in MVPA is leave-subject-out or 
also known as leave-one-out (LOO-CV), where re-
cords of one subject are assigned to be a test dataset 
[23].

Figure 1 – Representation of brain activities  
of different conditions in voxel space
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Usually, experiments in neuroscience are con-
structed in such a way that there is a balanced number 
of records with different labels in a dataset. Neverthe-
less, studies with unbalanced datasets can also take 
place: an example is the study of intrusive memory 
formation, in which Clark [24] attempted to predict 
mental health symptoms by reconstructing idiosyn-
cratic cognitive events. The labels of the conditions 
were not known at the time of the experiment. There-
fore, balancing techniques were needed to be em-
ployed prior to classifying the records.

As in any medical problem, sensitivity and speci-

model testing results in fMRI. Accuracy itself will 
not be enough to provide a full picture of the effective 
metric. In many studies, the ROC and Precision-Re-
call (PR) curve is employed as an evaluation metric.

Machine learning in EEG analysis

In contrast to fMRI, EEG is an economical and 
easy-to-operate tool for recording brain activity 
[25]. It records the brain’s electrical activity over a 
period of time. Electrochemical processes occurring 
in the neuronal activity of the brain resulted in elec-
trical oscillations on the brain surface with differ-
ent amplitude and frequency – alpha, beta, gamma, 
theta, and delta rhythms. The relationship between 
these rhythms depends on external stimuli and the 
state of the human brain. These rhythms may differ 
in different brain conditions. For example, Gollan’s 

difference in alpha rhythms between the left and 
right frontal part of the hemisphere than healthy 
participants [26].

Analysis of EEG has made it possible to develop 
brain-computer-interface systems. Brain-computer 
interface (BCI) system is an application that reads 
EEG signals in real-time and sends the decoded sig-
nals to an external device. 

The list of the neurological disorders that can 
be studied using EEG signals includes but is not 
limited to epilepsy, seizure prediction, Alzheimer’s 
disease, Mild Cognitive Impairment (MCI), Parkin-
son’s disease, Creutzfeldt-Jakob Disease, sleep stud-
ies, schizophrenia, analysis of emotional states [21]. 

possible to predict and prevent the development of 
depression [27]. 

EEG signals have better temporal resolution than 
fMRI signals, but the spatial resolution is low [28]. 

EEG signals are collected by electrodes placed on the 
participant’s head. Each electrode represents an EEG 
channel and records a brain signal from a part of the 
brain that is closer to the electrode. Nevertheless, the 
location of an electrode may not correspond to the 
exact location of the brain source [29]. This consti-
tutes an inverse problem that exists in EEG concern-
ing localizing a brain source that elicited a particular 
EEG signal [30].

Although both EEG and fMRI methods employ 
signal processing techniques for feature extraction, 
it should be noted that EEG mostly employs time se-
ries processing techniques, whereas fMRI combines 
image processing and time-series processing tech-
niques. In contrast to fMRI, where features are the 
signal intensity value at each voxel, EEG features can 
be EEG bands spectral powers, coherence and inter-
hemispheric asymmetry and other possible measured 
parameters from time-series.

EEG analysis is conducted in either time domain 
or frequency domain. Time-domain techniques en-
compass wavelet transform and connectivity metrics, 
whereas frequency domain encompasses Fourier 
transform and further work with signal spectrum. 
Physical stimuli induce changes in EEG signals 
called Event-related potentials. These potentials can 
be associated with mental activity and occur during 
stimulus perception or preparation and execution of 
actions. All types of EEG parameters may serve as 
features for machine learning to predict the brain ac-

used coherence parameters of resting state to clas-
sify depressed patients and healthy participants [31]. 
Machine learning is currently being applied to EEG 
data collected from healthy and depressed patients to 
predict performance differences between these two 
groups during a decision task [32], during an emo-
tional regulation task [33] and vigilance objectives 
[34]. 

Deep learning approaches are becoming more 
popular in EEG analysis. Thus, Acharya [21] uses 

predict depressed or healthy people. The proposed 
solution by Achraya [21] used a Backpropagation 
algorithm to train the network, adaptive moment es-
timation to optimize the parameters of the network 

A cross-validation strategy with 10 folds was used 

Neural Network has helped to achieve accuracy, sen-

right hemisphere.
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Conclusion

The studies reviewed in the present article dem-
onstrate the progress that has been made due to the 
use of machine learning techniques in fMRI analysis, 

overall. With technological advances and increasing 

-
sis may increase, even without changing the method-
ology of the machine learning application.

Machine learning has made enormous progress 
in the last two decades largely due to the growth 
of computing power and the emergence of deep 
learning; and its techniques have proved to be a 
valuable tool in gaining more insights from data in 
any domain that can possess a vast amount of data. 

big data should be aware of the applicability and ca-
pability of machine learning techniques to be able to 

-
ods discovered or invented while solving cognitive 
science-related problems may be useful and worth 
considering in solving problems in other domains 
beyond medicine.
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