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Purification and characterization of glutaminase and urease-free L-asparaginase 
from Bacillus atrophaeus with acrylamide reduction potential

Abstract. L-asparaginase (L-asnase) is a versatile enzyme with uses in food industry and medicine. Current 
study aimed to isolate L-asnase producing microorganism/s without urease and glutaminase and optimize 
L-asnase production. First, screening and isolation of L-asnase-producing bacterial strains that did not 
produce glutaminase and urease from chicken gizzards were performed. For this purpose, the enzyme 
producing bacteria were screened on the agar medium supplied with substrate and phenol red indicator dye. 
Among the isolated bacteria, 1 isolate showed L-asnase free of glutaminase and urease. The selected strain 
was identified by biochemical, morphological and 16s rRNA sequencing. The selected strain was identified 
as Bacillus atrophaeus by 16S rRNA sequencing. The effects of incubation temperature (30°C) and time 
(72 hours), medium pH (8.0) and nutritional sources (glucose and NaNO3) on L-asnase production were 
determined. L-asnase was purified with acetone, and its molecular weight was determined to be 42 kDa by 
SDS-Page. Enzyme kinetics were also calculated, and it was determined that Vmax was 43 μmol/mL/min 
and Km was 2.7 mM. L-asnase activity was highest at 40 ℃ and the optimal pH was 8.0. L-asnase activity 
was stimulated by Mn2+, Mg2+, and Ca2+ but inhibited by Co2+, Na+, Zn2+, and Hg2+. L-asnase was utilized 
to treat potato chips before they were fried in order to assess its capacity to mitigate acrylamide. The result 
was an 80% reduction in acrylamide concentration when compared to the untreated control. Based on these 
findings, it appears that L-asnase could have potential use in the food industry.
Key words: L-asparaginase, Bacillus atrophaeus, production, purification, acrylamide.

Introduction

L-asparaginase (E.C.3.5.1.1, L-asnase) is an 
enzyme of the hydrolase group. This enzyme 
hydrolyzes L-asparagine to ammonia and L-aspartate 
[1]. L-asnase has many applications in the health 
and food fields. L-asnase is a chemotherapeutic 
agent in the treatment of leukemia, Hodgkin’s 
disease, melanosarcoma, lymphosarcoma, and 
reticulosarcoma [1–3]. L-asnase is eco-friendly, 
biodegradable, safe, and can reach the desired area 
directly. L-asnase is important in reducing potential 
carcinogenic and neurotoxic acrylamide in food 
technology [4]. Apart from chemical and physical 
methods, enzymatic methods are also used to prevent 
acrylamide formation, which occurs when starchy 
foods are heated to high temperatures by frying or 
baking [5,6]. Acrylamide is formed by the Maillard 
reaction of L-asparagine and reducing sugars, which 
are naturally found in foods (coffee, crackers, and 
chips). The World Health Organization has declared 
acrylamide as a carcinogen due to its potential for 
mutagenicity and toxicity [7]. It is crucial to maintain 

desirable textural, nutritional and sensory qualities 
while reducing acrylamide formation. The easiest 
and most efficient method for preventing or reducing 
the formation of acrylamide is to utilize L-asnase 
[3]. Acrylamide formation can be reduced by using 
L-asnase before heat treatment of foods [8]. It is also 
known that L-asnase has antioxidant characteristics 
[9].

Due to its increasing use in the food and 
health fields, the market for L-asnase is constantly 
increasing. The market for L-asnase is estimated 
to be US$413.2 million in 2019 and will increase 
to US$435.8 million by 2025. Currently, L-asnase, 
which is used in clinical applications, is produced 
by Escherichia coli and Erwinia chrysanthemi. As 
cancer cases are expected to increase in the coming 
years, there will be an increase in demand for and use 
of L-asnase [10].

L-asnase is produced by a wide range of 
bacteria, fungi, actinomycetes, algae, and plants. 
Microorganisms are the most suitable sources for 
the production of L-asnase. However, this enzyme 
causes undesired side effects (liver, kidney, and 
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pancreas problems, hepatotoxicity, neurotoxicity, 
allergic reactions, coagulation anomalies) due to its 
impurities (glutaminase, urease). Therefore, extra 
purification steps are required to remove glutaminase 
and urease [11]. Isolation of glutaminase and urease-
free L-asnase producing isolates is unquestionably 
advantageous in order to reduce purification steps. 
The aim of this study is to optimize and characterize 
the glutaminase- and urease-free L-asnase production 
of newly isolated B. atrophaeus. The application 
potential of the L-asnase in acrylamide reduction in 
potato chips was also evaluated.

Materials and methods

Collecting samples and isolating bacterial strains. 
The gizzard samples from the local slaughterhouse 
were transported directly to the laboratory, after 
which samples were taken aseptically from the 
gizzard. Phosphate-buffered saline was added at 5 
mL for each gram of sample, and the falcon tube 
was shaken for 60 s. Serial dilutions were prepared 
from the resulting homogenate, spread on Nutrient 
Agar (NA, Merck, Germany) plates, and incubated at 
37 °C for 2 days. Individual representative colonies 
were selected for purification and plated on fresh NA 
plates. At -86 °C, pure cultures were cryopreserved 
in Nutrient Broth with 20% glycerol for later use.

Selection of bacterial isolates for L-asnase 
production. Isolated bacteria were screened using 
M9 agar plates (% 1.5 agar) containing phenol red 
and L-asparagine (10 g/L). M9 consisted of (g/L): 
2 glucose, 3 KH2PO4, 0.5 MgSO4.7H2O, 0.1 CaCl2. 
2H2O, 10 L-asparagine, 0.5 NaCl and 6 Na2HPO4. 
Phenol red 0.009% (w/v) was added as an indicator 
dye. On M9 agar plates, separated pure cultures 
were streaked, and the color change formation was 
observed for two days at 30 °C. Isolates with pink 
colored regions around bacterial colonies were 
evaluated as L-asnase producing strains. 

Screening of bacterial isolates for glutaminase and 
urease production. Both quantitative and qualitative 
techniques were applied to evaluate whether the 
isolated bacteria produced urease and glutaminase. 
Glutaminase or urease producing isolates were 
determined on phenol red indicator plates [12]. Pre-
culture of the isolates was grown overnight at 30 °C 
and 150 rpm in Nutrient Broth. The following day, 1 
mL of pre-culture (OD600 1) was added to 50 mL of 
M9 broth media in 250 mL flasks, and the mixture 
was incubated for 4 days at 30 °C at 140 rpm. It was 
determined using M9 media containing L-glutamic 
acid or urea as the sole nitrogen source, respectively. 
NaNO3 was used as the only source of nitrogen while 

preparing control plates. Glutaminase and urease 
activities were evaluated using the Nesslerization 
procedure outlined below to assess L-asnase activity. 
The buffer combination containing L-asparagine-
Tris-HCl was substituted with L-glutamine-Tris-HCl 
and urea-Tris-HCl, respectively, and the enzyme 
activity was determined using the same approach as 
stated below.

Identification of L-asnase producer bacterium. 
Abis Online Software was used for both 
morphological and biochemical tests to identify the 
bacterium [13]. The bacterium producing L-asnase 
was then identified based on 16S rDNA sequencing 
using universal primer sets 27F and 1102R. The 
obtained sequence was aligned and compared with the 
sequences deposited in GenBank (http://www.ncbi.
nlm.nih.gov/BLAST) and submitted to GenBank.

Analytical methods. The L-Asnase activity was 
determined by quantifying ammonia formation in 
the culture supernatant using Nessler’s reagent. The 
enzymatic reaction mixture contains 900 µl of 0.04 M 
L-asparagine in 50 mM M Tris-HCl buffer (pH 8.6) 
and 100 µL of crude enzyme. For 30 min, enzyme 
substrate mixtures were incubated at 37°C. At the end 
of the incubation, 100 µL of 1.5 M trichloroacetic 
acid (TCA) was added to stop the activity, and the 
mixture was incubated for 15 min. at 20 °C for color 
development. To separate precipitates from the 
reaction mixture, it was centrifuged at 8,000 rpm for 
6 min. Then, 200 µL of Nessler reagent was added to 
the sample containing 200 µL of supernatant and 1.6 
mL of distilled water, and the amount of ammonia 
released was determined using the UV visible 
spectrophotometer at 425 nm. At 37 °C, one unit of 
L-Asnase activity was stated the quantity of enzyme 
that produced 1 µmole ammonia per minute [11,12].

Enhancement of L-Asnase production using one 
factor at a time approach. The influence of carbon 
and nitrogen sources on L-Asnase production was 
investigated. For this purpose, six different carbon 
sources (2 g/L) such as glucose, fructose, mannitol, 
lactose, glycerol and sucrose and six different 
nitrogen sources (1 g/L) such as ammonium nitrate, 
ammonium sulfate, ammonium chloride, bacto 
peptone, tyrptone, and yeast extract were added to 
M9 broth. The effects of different temperatures (25-
40°C), pH (5-10), and incubation times (24-96 hours) 
on L-asnase production were tested.

Purification of L-asnase. B. atrophaeus AspK1 
was grown for 48 h at 180 rpm and 30 °C in optimized 
M9 medium containing L-asparagine. At the end of 
the period, the culture medium was centrifuged at 
10,000 rpm for 15 min., the supernatant was taken, 
and the bacterial cells were discarded. Chilled 
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acetone (-18 °C) was added to the supernatant (crude 
enzyme) at a rate of 60% to precipitate the proteins 
and mixed with a constant stirrer at 4 °C for 5 h. 
Then, centrifugation was done at 15,000 rpm and 4 
°C for 20 min. Precipitated proteins were dissolved 
in 50 mM Tris-HCl buffer (pH 8.0) and washed by 
ultrafiltration (Amicon® Ultra-15 centrifugal filter 
units, 10 kDa cutoff) at 5000 rpm at 4 °C [14]. 
Utilizing Biological LP Chromatography Systems 
(Biorad, USA), anion exchange chromatography 
was employed to carry out the remaining purification 
process. After washing out, concentrated enzyme 
solution was filtered through a 0.45 µm syringe 
filters and loaded onto HiTrap Q HP column (GE 
Healthcare) pre-equilibrated with 20 mM Tris-HCl, 
pH 8.0. During elution, 2 mL fractions were collected 
at a flow rate of 0.5 mL/min with a rising linear 
gradient of NaCl (50-500 mM) in a buffer of 20 mM 
Tris-HCl pH 8.0. Elution fractions were collected, 
and protein concentration was measured according to 
the Lowry Method [15].

Determination of molecular weight and kinetic 
constants (Km and Vmax). Using 12% (v/v) 
polyacrylamide gel stained with Coomassie Brilliant 
Blue R-250 following electrophoresis, crude and 
purified L-asnase fractions were subjected to SDS-
PAGE analysis. By comparing the relative mobilities 
with the Precision Plus Protein Unstained Standard 
(250-10 kDa), the molecular weights of the samples 
were determined.

Using L-asparagine as the substrate at dosages 
ranging from 0.2-4 mM, the Michaelis-Menten 
constant (Km) and maximum velocity (Vmax) of pure 
L-asnase from B. atrophaeus AspK1 were assessed.

Enzyme characterization. The activity of purified 
L-asnase was measured at various pH, temperatures, 
incubation times, and metal ion concentrations. The 
purified enzyme was studied in buffers of 50 mM 
pH between 3-10. Potassium phosphate (pH 3-7), 
Tris-HCl (pH 8-9), and glycine-NaOH (pH 10) were 
selected as buffers and used for residual activity 
determination. The L-asnase activity was determined 
at a temperature ranging from 20 to 80 ℃. The 
thermal stability of L-asnase was tested by pre-
incubating at different temperatures for 1-5 hours. 
Metal ions of salt solutions at 1 mM and 10 mM 
concentrations, such as MgSO4, CoCl2, FeCl2, CuCl2, 
ZnCl2, and CaCl2 were used for the determination of 
enzyme activity.

Application of L-asnase in potato chips. After 
being cleaned, the potatoes were peeled and chopped 
into 2 mm slices. In addition, distilled water was 
used to rinse the starch particles that had adhered 
to the potato’s surface. For forty minutes, the 

potato chips were submerged in a crude enzyme 
solution containing 40 U/mL at 40 °C, and dried on 
blotting paper. The potato chips were cooked for 5 
min at 180 °C, dried for 20 min. at 60 °C, and then 
chilled to room temperature. n-hexane was used 
three times to de-oil potato chips that were pureed 
and homogenized in a centrifuge tube. Acetonitrile 
was used to extract acrylamide. Finally, a 0.22 mm 
microporous membrane filter was used to remove 
resuspended liquids for additional examination [16]. 
Acrylamide analysis was performed using an LC-
MS/MS (Agilent 6460 Triple Quadrupole) with a 
mass-selective detector (MSD, Agilent 7000). The 
injection volume was 10 μL, and the solvent system 
consisted of 0.1% formic acid in water and 0.1% 
formic acid in methanol at a flow rate of 0.3 mL/min 
at 30 °C. 

Results and discussion

Isolation of bacterial species. Nine bacteria 
isolated from chicken gizzards. The digestive systems 
of animals provide very favorable environments 
for the life of microorganisms [17]. Bacteria in the 
digestive system can produce many enzymes that 
aid digestion. The chicken gizzard, which is one 
of these environments, constitutes a very complex 
environment. In the proximal intestine, such as 
the gizzard and small intestine, microorganisms 
compete with the host for energy. Lactobacillus and 
Clostrodium species are dominant in the gizzard 
[18,19]. It was also identified in genera such as 
Bacillus, Enterococcus, Corynebacterium, Weissella, 
Geobacillus and Planococcus [20]. Spore-forming 
Bacillus species are widely found in ecosystems due 
to their high resistance to environmental stresses.

Isolated bacteria were screened for L-asnase, 
L-glutaminase and urease activity on L-aspararagine-, 
L-glutamine- and urea-agar plates containing phenol 
red as an indicator. When these substrates break 
down, the released ammonia reacts with water to 
form NH4OH, which increases the pH of the medium. 
In these environments containing phenol red as a pH 
indicator, the pink color formation with an increase in 
pH is an indication of the production of the relevant 
enzyme [12]. L-asnase, used in chemotherapy, has 
possible side effects due to its impurities. Therefore, 
there is a need to discover new high-purity enzyme 
production sources for therapeutic uses [21]. Since 
the AspK1 isolate did not produce L-glutaminase 
or urease, there was no color change in the solid 
medium containing L-glutamine and urea, and 
it was determined that it showed a pink-colored 
region on the L-asparagine plate. This showed that 
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it produced L-asnase without producing glutaminase 
or urease. In addition, isolates were screened by 
spectrophotometry using the Nesslerization method 
and the AspK1 isolate was identified as the L-asnase 
producer without glutaminase and urease activity.

Identification of the glutaminase and urease-
free L-asnase producing bacterium. Biochemical 
tests and physical properties showed that the AspK1 
strain is a Gram positive, catalase positive, oxidase 
negative, aerobic, rod, pale brown pigmented, motile, 
and endospore forming organism (Table 1).

A 1463 bp 16S rRNA sequence was screened by 
BLAST (GenBank, NCBI) based on the result of the 
genetic analysis of the AspK1 strain. The nucleotide 
sequence is recorded in GenBank with the accession 
number MW866485.1, and Figure 1 shows species 
closely related to B. atrophaeus in the phylogenetic 
tree.

Table 1 – Morphological and biochemical characteristics of 
strain AspK1

Characteristic Result
Gram +
Shape Rods

Motility +
Endospore Ellipsoidal
Pigment Brown
Oxidase -
Catalase +
Urease -

Starch hydrolysis +
Nitrate reduction +
Anaerobic growth -

Figure 1 – Phylogenetic tree based on the 16s rDNA sequences of strain AspK1

Optimization of culture conditions for the 
production of L-asnase. Nutritional and environmental 
conditions highly affect enzyme production by 
microorganisms. These properties differ from one 
organism to another. The optimum temperature for 
L-asnase production by B. atrophaeus AspK1 was 
determined to be 30ºC (Figure 2a). Bacillus species 
have been reported to produce L-asnase within the 
temperature range of 25–40 [22].

In addition to temperature, the pH of the culture 
medium is important in enzyme production as it 
affects metabolism. Maximum L-asnase production 
was noted at pH 8.0, followed by a gradual decrease 
(Figure 2b). Similar to this study, El-Fakharany 

et al. [23] reported an optimum pH of 8.2 for B. 
halotolerans.

The effect of incubation time on the production 
of L-asnase is presented on Figure 2c. Maximum 
L-asnase was achieved in M9 at 48 hours and then 
gradually decreased. This result is consistent with 
the result of L-asnase production by B. velezensis 
[21].

The effect of various carbon sources on L-asnase 
production by B. atrophaeus AspK1 was evaluated. 
It was determined that the synthesis of L-asnase was 
highest when glucose was used and lowest when 
sucrose was present (Figure 2d). Similar results have 
been reported for B. subtilis [24], B. velezensis [21], B. 
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altitudinis [25], B. licheniformis [26], B. halotolerans 
[23] and Brevibacillus borstelensis [27].

For L-asnase production from B. atrophaeus 
AspK1, both organic and inorganic nitrogen sources 
were investigated. Inorganic nitrogen sources have 
generally resulted in high enzyme production. In 
this study, the highest L-asnase production with B. 
atrophaeus AspK1 was obtained when NH4NO3 was 

used among the nitrogen sources. In the presence 
of yeast extract, the least amount of L-asnase was 
produced (Figure 2e). In L-asnase production, 
NH4Cl for B. velezensis [26] and (NH₄)₂SO₄ for 
B. licheniformis [26] were determined as suitable 
nitrogen sources. As a nitrogen source, NaNO3 
was found suitable for Paenibacillus validus and 
Streptococcus sp. [28].

Figure 2 – The impact of a) temperature, b) pH, c) time, d) carbon sources,
e) nitrogen sources on L-Asp production by B. atrophaeus strain AspK1

Purification and characterization of L-asnase. 
Extracellular L-asnase found in the cell-free 
supernatant was used as the source of the crude 
enzyme. Cells in the broth culture medium were 
removed by centrifugation at 10,000 rpm for 15 min 
after 48 h of incubation. The L-asnase was purified 

using 60% (v/v) chilled cold acetone precipitation 
followed by Amicon® Ultra-15 centrifugal filter 
and anion exchange chromatography with the 
HiTrap Q HP column. The purification steps, protein 
concentration, specific activity and yield of L-asnase 
are shown in Table 2.

Table 2 – Purification steps of the L-Asp from B. atrophaeus AspK1

Steps Total activity (U) Total protein (mg) Specific activity (U/mg) Fold purification Yield (%)
Crude extract 810 105 7.71 1.0 100

Acetone precipation 578 31.5 18.34 1.5 67
Ion Exchange 288 11 26.18 4.8 34

The amount of protein in the L-asnase production 
medium was determined to be 105 mg. In acetone 
precipitation, the enzyme yield of L-asnase was 
measured at 67%, and its protein content was 
measured at 31.5 mg. It was observed that the specific 
activity increased in the purification of L-asnase with 

acetone. A specific activity of 26.18 U/mg protein 
with a 34% yield and 4.8-fold purification was 
obtained from the final purified enzyme. In many 
studies, as the purification coefficient increased, 
the yield decreased, however, the specific enzyme 
activity increased [29,30].
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After L-asnase was purified, its molecular mass 
was determined by SDS-PAGE analysis. Molecular 
mass in the range of 25-47 kDa is common in 
Bacillus L-asnase such as 37 kDa for B. licheniformis 
[26], 39.7 kDa for B. velezensis [26], 38.2 kDa for B. 
amyloliquefaciens [31], 41.5 kDa for B. halotolerans 
[23], 42 kDa for B. australimaris [32] and 47 kDa 
for B. megaterium [33]. The molecular weight of B. 
atrophaeus L-Asnase was determined to be (42 kDa) 
(Figure 3) and varied from other Bacillus species.

Figure 3 – SDS-PAGE of the purified L-Asp. Note: M – 
standard protein markers;

Lane 1 – crude enzyme; Lane 2 – purified enzyme

Determination of kinetic constants (Km and 
Vmax). The Km indicates the enzyme’s affinity for its 
substrate, whereas the Vmax, which is measured in 

units of product generated per unit of time, indicates 
substrate turnover [26]. Enzyme kinetic parameters 
showed Vmax at 43 µmol/ml/min and Km at 2.7 mM, 
which indicates the high affinity of this enzyme to its 
substrate. Many factors (origin, structure, and form of 
an enzyme, enzyme conditions and assay procedures) 
influence the kinetic features of enzymes. Km and 
Vmax values for an L-asnase from B. velezensis were 
3.6 mM and 41.49 µmol/ml/min, respectively [26]. The 
Km was found to be 4.56 mM for the B. australimaris 
NJB19 [32]. The Km of purified L-asnase from B. 
licheniformis was 1.4 mM [29].

Effect of temperature and pH on L-asnase 
activity. Temperature effects on L-Asnase stability 
were investigated at temperatures ranging from 20 to 
90°C (Figure 4).

Results in Figure 4 determined that it showed 
maximum activity at 40°C. L-asnase activity lost 
approximately 60% of the total activity at 90°C. 
Purified L-asnase showed maximum stability after 
1h incubation at 40°C, retaining more than 96% of 
its total activity. In addition, L-asnase lost about 
40% of its activity after 5h of incubation at 80°C. 
L-asnase was found to be quite stable at 30-50°C 
and retained more than 85-70% of its activity after 
5h of incubation. This reasonable thermostability of 
L-asnase is important for its use in biotechnological 
fields [31].

L-asnase purified from B. atrophaeus AspK1 was 
studied at pH 3.0-10.0 and was determined to be most 
active at pH 7.0. Enzyme activity decreased at lower 
pH values (Figure 5).

Figure 4 – Thermostability of B. atrophaeus AspK1 L-Asp at different temperatures for 5 h
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Figure 5 – pH stability of B. atrophaeus AspK1 L-asnase incubated in various pH for 5 h

AspK1 L-asnase retained 85% of its activity 
when incubated for 5h at pH 7. In a study with 
L-asnase obtained from B. megaterium, more than 
80% residual activity was determined after 2h of 
incubation at pH 5.0-8.0 [34]. 

In addition, it was determined that L-asnase 
obtained from B. amyloliquefaciens showed more 
than 80% residual activity after 4h of incubation at 
pH 3.0-11.0 [31]. This is because L-asparagine, when 

broken down into L-aspartic acid, causes the pH to 
decrease [31, 34].

Effects of metal ions on the activity of L-asnase. Due 
to their ability to attach to specific areas of the enzyme, 
metal ions are important for preserving both its structure 
and activity [14]. It was determined that the purified 
enzyme was sensitive to different metal ions. In this 
study, Mn2+ ions (1 mM and 10 mM) increased AspK1 
L-Asnase activity by approximately 44-33% (Figure 6). 

Figure 6 – Effects of different metal ions on L-Asnase from B. atrophaeus AspK1

L-asnase activity increased by 105-120% in the 
presence of 1mM Ag2+, K+ and Fe+2. In addition of 
10mM of Fe2+, Ni2+, Ag+, Fe2+ and Cu2+ decreased 
the activity by more than 40%. The present study 
determined that some metal ions (Ca2+, Mn2+, K+ and 
Mg2+) can be evaluated as activator for the L-asnase 

produced by B. atrophaeus. Stimulation of L-asnase 
with Mn2+ and Mg2+ ions is common [31,35,36]. 
Also, similar to other studies, the enzyme activity 
was inhibited by Hg2+, Cu2+ and Co2+ [37].

Acrylamide mitigation potential of B. 
atropheus L-asnase. The effect of L-asnase on 
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the reduction of acrylamide in potato chips was 
examined by treating the potato slices with 40 U/
mL of L-asnase. Approximately 80% less acrylamide 
was formed during the frying process of potato strips 
treated with L-asnase than when potato strips were 
left untreated (Figure 7).

Figure 7 – Content of acrylamide  
in potato chips after L-asnase treatment

Significantly, B. atrophaeus L-asnase’s capacity 
to reduce acrylamide is similar to that of other 
microbial L-asnase that have been previously 
documented. In fried potatoes and baked mooncakes, 
for example, Paenibacillus barengoltzii’s L-asnase 
lowered acrylamide by up to 86% and 52%, 
respectively [37]. In parallel research, two distinct 
strains of B. subtilis were shown to have L-asnase 
that could reduce acrylamide by up to 80% [38] and 
82% [39].

Similarly, L-asnases from Acinetobacter soli 
[8], Cobetia amphilecti AMI6 [40], Aquabacterium 
sp. A7-Y [41], and recombinant Palaeococcus 
ferrophilus [42] have also been shown to reduce 
acrylamide concentrations by up to 80%, 88.2%, 
55.9%, and 79%. However, Streptomyces koyangensis 
SK4 reduced acrylamide levels in potato chips by 

up to 50% [43], and L-ASNase from Aspergillus 
terreus BV-C observed 93% acrylamide reduction 
[44]. Recently, the amount of acrylamide in bread 
and potato chips was decreased by 51.7% and 66.9%, 
respectively, thanks to an engineered E. coli L-asnase 
[45].

Furthermore, using L-asnase produced by 
Fusarium culmorum reduced the amount of 
acrylamide in bread and potato chips to 86% and 
94%, respectively[46]. Bhagat et al. (2016) [47] 
reported that the acrylamide concentration in fried 
potatoes treated with L-asnase from Pseudomonas 
oryzihabitans reduced to 90%.

Conclusion

A newly-isolated B. atropheus AspK1 was 
isolated for L-asnase production. The production 
of L-asnase has been determined to be influenced 
by pH, temperature, incubation period, and carbon 
and nitrogen sources. Glutaminase and urease-
free L-asnase from B. atropheus AspK1 was found 
to have a molecular size of 42 kDa. The high pH 
and thermostability of L-asnase obtained from B. 
atrophaeus is important for its use in biotechnological 
fields. Glutaminase and urease-free AspK1 L-asnase 
could possibly be used in the pharmaceutical or food 
industries. Our isolated B. atropheus AspK1 enzyme 
significantly reduced the creation of acrylamide in 
potato chips. Therefore, the study is very valuable 
considering the commercial and vital importance of 
L-asnase.
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