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Genetic markers of sports performance, interpretation of individual
genotypes in the athlete’s genetic passport

Abstract. Identifying and studying genetic polymorphisms that determine the phenotypes of elite athletes
is a highly relevant and significant task in sports science. This research forms the foundational basis for
developing what are known as sports genetic passports, which have the potential to revolutionize athlete
training and performance through personalized genetic insights. The aim of this review was to analyze
genetic markers associated with the development of key athletic qualities — specifically strength, power,
speed, and endurance — by conducting a selective systematic review of the existing literature. Through this
comprehensive review, we were able to select single nucleotide polymorphisms (SNPs) that are associated
with specific athletic traits by examining the functions of their corresponding gene products. This approach
offers a valuable framework for interpreting sports genetic markers within genetic passports. These genetic
markers can provide scientists and practitioners in the fields of physical culture and sports medicine with
the latest and most compelling evidence in exercise genomics, thereby facilitating more personalized
and effective training strategies. As a result, we have compiled a set of 40 widely recognized genetic
markers linked to athletic performance—strength, speed, and endurance. This compilation serves as a crucial
resource for further research and practical applications aimed at optimizing athletic potential and enhancing
performance.

Key words: sports, genetic markers, endurance genes, speed-related genes, muscle fibers, single nucleotide
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Introduction

Sports genetics provides insights into an
individual’s capacity for specific types of exercise,
shaped by both task demands and genetic factors.
An athlete’s genotype strongly influences traits
like strength, endurance, muscle fiber composition,
muscle mass, flexibility, neuromuscular coordination,
and reaction speed [1]. Genetic testing of both
professional and amateur athletes can provide initial
information on optimal physical loads for an
individual based on their muscle fiber composition
and metabolic characteristics. This testing also
aids in selecting appropriate sports and optimizing
nutrition, training regimens, and recovery processes
[2]. According to O.S. Glotov, when considering
trait heritability, it’s important to acknowledge that
the development and expression of physical qualities
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result from a complex interplay between genetic
and environmental factors. Thus, in early sports
specialization, identifying genetic predispositions
toward sports where success relies on highly heritable
traits — like explosive power, speed, and flexibility —
is essential [3].

In sports genetics, two types of methods are used
for detailed analysis of genetic features: candidate
gene studies and genome-wide association studies
(GWAS). Case-control studies continue to be the
predominant research approach in sports genetics
[4-7]. At the same time, the advent of GWAS has
enabled the analysis of entire genomes and the
identification of multiple mutations or polymorphisms
simultaneously [8]. Furthermore, the overall effect
of polymorphisms on an athlete’s status can be
measured through meta-analysis [9]. Advances in
GWAS methodologies may broaden the spectrum
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of genetic variants linked to elite athletic status and
other attributes critical for athletic success, including
susceptibility to performance-limiting injuries and
individual responses to training and nutrition [5].

The field of sports genomics emerged in the
early 2000s after the human genome was decoded
and the first DNA polymorphisms linked to athletic
performance were discovered (such as variations
in the ACE, ACTN3, AMPDI, PPARD, and
PPARGCIA genes) [10]. According to recent data
from Akhmetov, 149 genetic marker variants are
associated with various physical activity traits (42 of
which are genome-wide significant), and 253 variants
are linked to athlete status (115 related to endurance,
96 to strength) [6].

Although the relationship between the ACTN3
and ACE genes and athletic performance has been
extensively studied [11], the list of candidate genes
is updated annually and continues to expand [12-14].
Modern genetic tests examine several well-known
variants thought to be related to athletic abilities
(e.g., the ACTN3, ACE, and NOS3 genes) or injury
susceptibility (e.g., the COL541, COLIAI, and
MMP3 genes). A review of the literature suggests
that some of these genetic associations with specific
physical predispositions can be reasonably confirmed.
For example, the ACE gene is linked to endurance,
while ACTN3 is associated with strength. However,
genetic test results for athletes should be interpreted
cautiously, as each genetic variant explains only
a small portion of performance, with factors like
training volume, organization, nutrition, daily
routine, and other environmental factors playing a
much larger role [15].

In this review, we aim to analyze the genetic
markers associated with athletic qualities and the
functions of these gene products based on the
available literature. We also propose an interpretation
of the sports markers related to strength, speed, and
endurance for use in genetic passports.

Materials and methods

This literature review aims to comprehensively
summarize relevant information from publications on
genetic markers responsible for athletic performance.
By analyzing a broad range of studies, we seek to
identify key genes and polymorphisms that influence
traits such as strength, endurance, speed, and muscle
fiber composition. Understanding these genetic
factors is crucial for advancing personalized training
programs, improving athletic performance, and
potentially reducing the risk of injury among athletes.
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The articles reviewed in this paper were published
between 2003 and 2023 and were sourced from online
search engines and library databases, including Web
of Science, NCBI, and PubMed. The primary search
terms used were “sports genetics,” “genes associated
with athletic performance,” ‘“candidate genes,”
“endurance genes,” “speed genes,” “muscle fibers,”
among others. We employed both individual terms
and combinations thereof to ensure a comprehensive
search. The search process also involved reviewing
the bibliographies of the retrieved articles to extract
additional relevant publications. Inclusion criteria
focused on peer-reviewed articles that provided
significant insights into the genetic aspects of athletic
performance.

In addition, we utilized the program STRING:
functional protein association networks, Version
12.0, as a primary data resource. Identified by the
Global Biodata Coalition and ELIXIR, this tool
allowed us to explore protein-protein interactions and
functional associations between the genetic markers
of interest. Data was accessed on May 9, 2024. The
use of STRING facilitated a deeper understanding
of the biological pathways and networks involved in
athletic performance, thereby enriching the analysis
and interpretation of the genetic data collected.

Results and discussion

Numerous data, including findings from recent
studies, confirm that polymorphisms in certain genes
impact an athlete’s physical traits, such as strength,
speed, and endurance, thereby influencing the body’s
predisposition toward strength or endurance training
[10,16]. In this review, we based our findings on a
large body of scientific research to present candidate
genes for athletic qualities. Expanding this list of
genetic polymorphisms that determine the phenotype
of an elite athlete is a highly relevant task, as it serves
as the basis for developing so-called sports genetic
passports. A sports genetic passport assesses the
cumulative contribution of genotypes and gene alleles
in determining hereditary predisposition to physical
activity and developing professional pathologies in
athletes. Below is a panel of 40 of the most prevalent
genetic markers selected from scientific articles
associated with athletic activities. The presented
table provides a list of genes proven to influence
human athletic qualities (Appendix, Table 1).

Markers of strength and endurance. ACE is the
most extensively studied gene in physical activity
genetics [17-20]. The ACE 1 allele is linked to a
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predisposition for endurance sports and resistance to
hypoxia in high-altitude environments. The ACE gene
encodes Angiotensin-Converting Enzyme, a zinc-
containing protease that catalyzes the conversion of
angiotensin-1 to angiotensin-I1I (AT-II). The ACE
gene contains 26 exons, and in the 16th intron, there
is a deletion of a specific DNA sequence (Alu repeat
287 bp). There is also considerable evidence linking
the ACE gene polymorphism (specifically the D
allele) with an increased risk of conditions such as
myocardial infarction, hypertension, left ventricular
hypertrophy (LVH), hypertrophic cardiomyopathy,
obesity, kidney disease, and vascular complications
of type 2 diabetes, even among athletes [21-24].
Research results on the influence of the ACE gene
on the strength and speed qualities of professional
athletes are contradictory. In addition to positive
associations affecting sprinting qualities, there are
also negative associations. For example, a research
group led by Scott et al. conducted studies on
Kenyan, Ethiopian, Jamaican, and African-American
populations and refuted the influence of ACE
genotypes on the predisposition to sprinting abilities.
They found that ACE’s DD and GG genotypes do not
contribute to endurance development in athletes [25].

The AGT gene, which consists of five exons,
encodes angiotensinogen, a serum protein in the
a-globulin fraction, primarily produced by the liver
and adipocytes in adipose tissue. The synthesis of this
protein is regulated by estrogens, glucocorticoids,
and thyroid hormones. Literature suggests that the
13699 polymorphism in the AGT gene is associated
with the status of strength athletes but not with
endurance-trained athletes [26,27]. Additionally,
GWAS studies on sprint performance in elite youth
soccer players with various genetic polymorphisms
highlight a connection between the rs699 SNP of the
AGT gene and sprint test outcomes [28].

The GALNTL6 gene has 21 exons and encodes
a membrane-bound protein N-acetylgalactosaminy
Itransferase type 6, predominantly expressed in the
testes, brain, spinal cord, cerebellum, and skeletal
muscles of adults. It plays a significant role in the
glycosylation pathway of proteins, which is a part of
the post-translational modification of polypeptides
[29]. The C/T polymorphism (rs558129) in the
GALNTLG gene, located in the last intron, is positively
associated with athletic performance [30-32].

The NRIH3 gene encodes a nuclear receptor
involved in regulating macrophage function, lipid
homeostasis, and inflammation [33]. The association
of rs7120118 with high endurance may indicate a
strong linkage disequilibrium (12 = 0.89, P <0.0001)
between rs7120118 TT and the potentially functional
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rs1052373 GG. This link might also be connected
to increased synthesis of the testosterone precursor
Salpha-androstane-3alpha,17alpha-diol disulfate,
as NRIH3 regulates hypothalamic-pituitary-adrenal
steroidogenesis [34]. Al-Khelaifi F et al. found that
athletes with high endurance display elevated levels
of several sex hormones involved in testosterone
synthesis [35]. However, the functional significance
of these associations still requires further validation.

Research by Akhmetov et al. demonstrated that
the C allele of NFIA-AS2 rs1572312 and the TSHR
rs7144481 allele are indicators of elite endurance
athlete status, including in marathon runners [36].

The NOS3 gene encodes the endothelial NO
synthase enzyme, which catalyzes nitric oxide
(NO) formation from L-arginine. The G allele
(Glu298, rs1799983) is a marker of predisposition
to endurance development, associated with the
functions of the vascular and respiratory systems
and insulin sensitivity in liver and skeletal muscle
cells [37]. Sorokina et al. identified associations of
polymorphic variants of the ADRB2, NOS3, and
PPARGC1A genes associated with endurance in judo
and freestyle wrestling athletes with different sports
qualifications [38,39].

The KCNJI1 gene encodes a potassium channel
protein. The substitution of cytosine (C) with
thymine (T) at position 67 of the nucleotide sequence
leads to the replacement of the amino acid lysine
with glutamine (Lys23Gln), which alters the protein
structure, prevents the closure of the channels and
results in reduced insulin secretion from beta cells and
impaired blood sugar control. KCNJI1 is involved
in carbohydrate metabolism and is expressed in
various tissues, including the myocardium and
skeletal muscles. It is frequently studied to identify
genetic predisposition to type 2 diabetes and assess
the cardiovascular system’s adaptation to physical
exercise and stress. In the work of Gonzalez et al., a
sample of Spanish marathon runners showed a higher
frequency of the KCNJII 23GIn allele than the
control group [40]. Akhmetov considers the KCNJI 1
GIn23 allele a potential genetic marker for endurance
development [41].

The GABPSI gene, which encodes a subunit of
the beta one transcription factor GA-binding protein
(also known as nuclear respiratory factor 2, NRF2),
is associated with athletic status. The minor alleles G
(rs7181866) and T (rs8031031) are overrepresented
in athletes (P < 0.003), particularly among world-
class athletes (P < 0.0002), and may enhance the
likelihood of an individual becoming a combat sports
athlete, potentially due to an improved mitochondrial
response to intermittent exercise [42,43]. No
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association was found between genotypes and relative
aerobic capacity, nor between GNB3 genotypes and
blood pressure, BMI, and fat percentage [44].

Georgios 1. Tsianos et al. studied the association
of polymorphisms in eight genes related to muscles
or metabolism with endurance performance in
participants of the Olympus marathon. They showed
that among 316 male athletes who identified running
as their favorite sport, BDKRB2 rs1799722 (P =
0.018) and ADRB2 rs1042713 had a significant
association with faster times for the minor alleles,
with the fastest time on record (P = 0.01) [45].

Cytokines are important mediators of various
aspects of health and disease, including appetite,
glucose and lipid metabolism, insulin sensitivity,
and the hypertrophy and atrophy of skeletal muscles
[46]. Interleukin-6 (/L-6) is a functional protein with
a cytokine structure. It is especially effective in the
immune system, providing pro/anti-inflammatory
responses and muscle tissue hypertrophy and
recovery. A study by Turkish scientists aimed at
studying the distribution of the /L-6 rs1800795
polymorphism in national cross-country skiers and
determining the preferred genotype for endurance
performance showed that the GC genotype is more
advantageous than the GG genotype in skiers [47].

The ADRB3 gene plays a role in energy
expenditure by participating in lipolysis, which
affects body composition and performance [48]. An
important polymorphism involved in the genetics
of physical fitness is rs4994, which consists of the
substitution of cytosine for thymine at codon 64
of the ADRB3 gene, resulting in the conversion of
tryptophan to arginine (Trp64Arg) in the amino
acid sequence. Santiago, Catalina, and colleagues
demonstrated that heterozygosity for the ADRB3
Trp64Arg polymorphism is linked to elite endurance
performance. At the same time, other variants of
B-adrenergic receptor genes do not appear to provide
a good result in high-level athletic performance, at
least among athletes of Spanish descent [49].

Markers of speed-strength abilities and muscle
mass gain. ACTN3 (alpha-actinin-3) is recognized as
one of the most significant genes related to physical
fitness (both aerobic and anaerobic), playing a key
role in the development and function of muscle fiber
structure. Individuals with two functional copies
of the reference variant (RR) of the ACTN3 gene
typically exhibit a better ability to develop muscle
strength and speed activity, as alpha-actinin-3
accelerates muscle contraction [9,50,51]. A genotype
effect exists among female sprinters and endurance

Int. j. biol. chem. (Online)

athletes: a higher-than-expected number of 577RX
heterozygotes among sprinters and a lower-than-
expected number among endurance athletes. The
absence of a similar effect in men suggests that
the ACTN3 genotype affects athletic performance
differently in men and women [51]. However, other
similar studies indicate the opposite. For example,
Gentil P et al. reported that the R577X polymorphism
in the ACTN3 gene was not associated with muscle
strength at rest and the muscle strength response to
resistance training [52].

The AMPDI gene encodes adenosine
monophosphate deaminase-1, crucial in adenosine
and adenosine monophosphate (AMP) metabolism.
Mutations in the AMPD1 gene can be associated with
various hereditary diseases, such as mild myopathy,
which may manifest as muscle weakness and fatigue.
Additionally, variations in the AMPDI gene can
affect physical endurance and the risk of developing
various metabolic and muscle function-related
diseases. Restriction fragment length polymorphism
analysis showed a notably lower frequency of T
allele and TT genotype in the AMPD 1 among athletes
participating in speed and strength sports (N=305)
compared to non-athletes (N=499). Thus, the C34T
polymorphism of the AMPD1 gene can be considered
a marker of predisposition to high-speed and strength
muscle activities [52]. However, publication results
indicate ambiguous findings among elite athletes and
controls. For example, Gineviciené et al. considered
the AMPD1 C allele a marker associated with sprint
and strength performance. In contrast, the T allele
is seen as an unfavorable factor for strength-related
athletics [53].

The AQPI gene encodes a protein known as
aquaporin-1 (AQPI), a member of the aquaporin
family of proteins. AQPI expression is observed in
various tissues, namely red blood cells, endothelial
cells, as well as smooth, skeletal, and cardiac muscles.
AQPI regulates water permeability in the heart’s
capillary network, ensuring water flows through
the endothelial layer into the blood. Additionally,
aquaporin-1 may play a role in various physiological
processes, such as cell volume regulation, water
transport in the lungs and other organs, and
influencing the function of the nervous system and
circulation [54].

Muscle fiber type and endurance. The
PPARGCIA gene ensures muscle tissue’s
morphology and energy metabolism. The G482S
G>A polymorphism leads to reduced oxidative
processes and impaired mitochondrial formation.
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Research has demonstrated that individuals with
the G allele exhibit an increased proportion of slow-
twitch muscle fibers and enhanced aerobic capacity,
both in athletes and non-athletes. In contrast, the A
allele is linked to a higher risk of hypertension in
people under 50 years old, obesity, and type 2 diabetes
[55]. Therefore, the presence of the G allele favors
the development of endurance. Carrying the PPARG
12Ala allele increases muscle tissue sensitivity to
insulin and enhances its anabolic effects on skeletal
muscles, predisposing individuals to develop and
display speed-strength qualities [56].

Individuals carrying the G allele of the PPARA
gene exhibit a predominance of aerobic metabolism
and increased content of slow-twitch muscle fibers,
giving them an advantage in the development
and manifestation of endurance. Such a genotype
contributes to success in cyclic sports activities [57,58].

The TTN gene encodes the third myofilament,
titin, which plays a structural, mechanical,
regulatory, and ontogenetic role in sarcomeres. The
most well-known variation in the 77N gene is the
C>T polymorphism (rs10497520), which results in
the transformation of lysine (Lys) into glutamic acid
(Glu), which may influence the variability of isoform
expression in muscle tissue [60].

Muscle strength. A group of researchers
demonstrated a strong association between ACVRIB
genotypes and the strength of knee extensors, with
rs2854464 being the most promising candidate
polymorphism, where the A allele (allele frequency
0.73) was associated with higher muscle strength
[61]. Additionally, it was shown that the phenotype-
genotype relationship may depend on ethnic
background; for example, the ACVRIB rs2854464
A allele is associated with sprinting/strength
performance in Caucasians but not in Brazilian
athletes [62]. Genome-wide association studies
(GWAS) identified FTO as a gene that contributes to
obesity and maximizes BMI variability in Europeans
and Asians [63]. Rut Loos and her colleagues
reported the results of a meta-analysis of numerous
studies investigating how physical activity mitigates
the impact of a specific F7O gene variant on obesity
in adults and children. They reported a significant
attenuation of the influence of this genetic variant
on obesity risk in adults due to physical activity by
approximately 30% [64].

Endurance under anaerobic conditions. The
hypoxia-inducible factor alpha (HIFIA) gene

encodes a transcription factor that facilitates cellular
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adaptation to low-oxygen environments. HIF1A is
among the genes studied in the context of genetics
and athletic performance [65,66]. Pickering, Craig,
et al. conducted a genome-wide association study to
identify genetic variants associated with sprint test
results in elite young football players using a “case-
control” scheme, where they identified 2 SNPs in
ADRB?2 as markers associated with footballer status
[67]. The T/C polymorphism in NOS3 (rs2070744) is
a candidate for explaining individual differences in
phenotypes. Comparing the results of 100 world-class
endurance athletes, 53 elite strength athletes, and 100
sedentary, healthy men of Spanish origin associated
with sports, significant differences in genotype
frequencies among footballers, athletes in the control
group, endurance athletes, and strength athletes (all
P <0.02) were shown. It was demonstrated that the
-786C allele is associated with elite footballer status
[68]. Henderson, Jennifer, et al. reported that EPAS1
haplotypes might provide a more sensitive metabolic
response in determining the aerobic and anaerobic
contributions to endurance sports [69].

Endurance under aerobic conditions. The UCP2
gene plays a role in thermogenesis, regulation of lipid
and energy metabolism, protection against reactive
oxygen species, influence on insulin secretion,
and possesses neuroprotective effects. It has been
established that the expression of UCP2 increases
in human skeletal muscles in response to aerobic
training [70]. By inhibiting insulin production in
pancreatic cells, the product of the UCP2 gene
promotes lipolysis—the utilization of fatty acids as
an energy source—thereby enhancing the body’s
efficiency and endurance [71]. However, the results
of existing publications indicate ambiguous results.
For example, Petr M et al. found no correlation
between tested strength/power parameters and UCP2
Ala55Val genotypes in elite football players [72].
The GSTPI gene encodes glutathione S-transferase
P1, important in detoxification and antioxidant
protection. There is some evidence suggesting that
the GSTPI ¢.313A>G polymorphism may positively
influence physical activity. The G allele of the
GSTPI ¢.313A>G single nucleotide polymorphism
is associated with improved endurance performance
due to better elimination of exercise-induced reactive
oxygen species [73]. The HFE gene regulates blood
iron levels and hepcidin expression in the liver,
affecting iron availability. Thakkar, Drishti, et al.
showed associations between HFFE risk genotypes
and endurance performance, suggesting that
individuals with HFE genotypes of moderate or high
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risk (rs1800562 and rs1799945) outperform those
with low-risk genotypes in a 10-kilometer cycling
workout [74].

Endurance and features of the vascular system.
The VEGFA gene, encoding the VEGF-A protein,
regulates erythropoiesis, angiogenesis, and muscle
blood flow. This gene’s specific SNP variants
(rs2010963) are associated with human endurance.
Boidin et al. found that these SNPs are linked to
adaptation to four-week resistance and endurance
training. Heterozygotes for the C allele in rs2010963
adapt better to endurance, while homozygotes for the
G allele demonstrate less endurance adaptation [76].
Akhmetov et al. reported an association between
polymorphisms of the VEGFR2 gene and aerobic
power and muscle fiber type [77].

Predisposition to combat sports. In the study by
Krzysztof Chmielowiec et al., a connection between
the polymorphism of the dopamine receptor gene and
the personality traits of athletes practicing martial
arts was demonstrated. In athletes, a lower score on
the reward dependence scale was associated with the
DRD?2 151799732 polymorphism compared to the
control group [78].

Fighting characteristics and qualities of a
strength athlete. Success in combat sports has been
associated with three polymorphisms (SLC642
1s2242446, HTRIB 1s11568817, and ADRA2A
rs521674) encoding components of the serotonergic
and catecholaminergic systems. A single nucleotide
polymorphism (SNP) in the promoter region of the
norepinephrine transporter gene SLC6A42 (1s2242446)
has been associated with panic disorder. Scientists
suggest that this SNP may be associated with
anxious arousal in individuals who have experienced
trauma [79]. The results of Peplonska, Beata et al.’s
research confirm the hypothesis that genetic variants
potentially influence mental processes and emotions,
particularly the serotonin pathway, and also affect
predisposition to sporting achievements [80]. The
dopamine transporter gene SLC6A3 has also been
proposed as a candidate gene for attention-deficit/
hyperactivity disorder syndrome [81].

Endurance of an athlete fighter. Between 20%
and 60% of athletes experience stress due to excessive
physical exertion and inadequate recovery [82]. The
prevalence of stress is higher in endurance sports
such as swimming, rowing, cycling, triathlon, and to
some extent, long-distance running, where athletes
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train for 4-6 hours a day, six days a week, for several
weeks without a break from intensive workouts [83].
Therefore, the genes TPH2 and NR3C2 were chosen
as genetic markers of endurance in combat sports
athletes. Upon entering the central nervous system,
L-tryptophan is converted by tryptophan hydroxylase
(TPH) into 5-hydroxytryptophan (5-HTP), the rate-
limiting step in serotonin synthesis in the brain. This
compound is rapidly decarboxylated by aromatic
amino acid decarboxylase to form cytosolic serotonin.
This process may reflect adaptation to different needs
for regulating serotonin production in the brain and
peripheral organs [84]. The NR3C2 gene encodes
the mineralocorticoid receptor, which mediates the
action of aldosterone on salt and water balance in
target cells. Defects in this gene are also associated
with early-onset hypertension. Homozygosity for
the G allele of the MR-2G/G gene polymorphism
is associated with higher cortisol levels in healthy
adults, especially during peak cortisol secretion in
the morning. This polymorphism may contribute
to interindividual variability in stress response and
may be involved in the development of stress-related
disorders [85].

Marathon runner’s endurance. The brain’s
serotonin receptors (5-HTR) are located on neurons
innervating cortical and limbic areas involved in
cognitive and emotional regulation. Among the
fourteen subtypes of 5-HTR, 5-HTIAR and 5-HT7R
are associated with the development of anxiety,
depression, and mental functions [86]. The findings
of Haslacher H et al. suggest that the 5-HT'1A receptor
may mediate the positive effects of physical exercise
on depressive mood, and the protective effect is
enhanced by the C allele of the rs6295 variant [87].

Speed indicators. The COL6A1 gene encodes
one of the subtypes of collagen type VI, an essential
extracellular matrix component. It plays a crucial
role in maintaining the structural integrity of various
tissues, including skin, muscles, and connective
structures. Studies have shown that the variant of the
COLG6AI gene, 1s35796750, is a marker of endurance
performance in cycling during a 180-kilometer
cycling stage and a 226-kilometer South African
triathlon and is associated with changes in tissue
composition (muscles and tendons) [88]. However, in
other similar studies, the results indicate the opposite.
No significant differences in genotypes were found
for COL3A1 (P = 0.828), COL6A1 (P = 0.300), or
COLI12A41 (P=0.120) genotypes between the EAMC
and NON groups [89].
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Conclusion

Active research is being conducted in many
countries worldwide to develop methods for
identifying promising candidates for various sports.
Thanks to the continually improving methods of
molecular biology and genetics and the significant
experience accumulated by international colleagues,
it has become possible to determine athletic potential
from birth, significantly increasing the chances of
choosing the optimal sport.

This review is based on the analysis of
genetic profiles of professional athletes from a
comprehensive search of literature data, identification
of key candidate genes, determination of each gene’s
contribution to traits such as speed, muscle strength,
and endurance, and evaluation of variations across
different populations. Based on our new inclusion
criteria and using the STRING program, our literature
search revealed interaction networks between genes,
their experimental determination, co-expression, co-
occurrence in scientific texts, and scientific evidence
for at least 40 genetic markers potentially associated
with athletic qualities (Appendix, Table 1).

We acknowledge the limitations of this review, as
it does not include all psychogenetic characteristics
of athletes (e.g., stress response, leadership qualities,
team-playing ability, attention, tactics, strategy,
risk-taking propensity) or metabolic characteristics
affecting athletic capabilities and performance
(e.g., hormonal balance, vitamin and micronutrient
sufficiency, bone strength). Additionally,
predispositions to injuries and diseases due to high
physical load (e.g., cardiovascular system features,
muscle fiber type, ligament elasticity, fracture
risk, inflammatory response, tissue regeneration
capability) were not covered. Although many other
genetic factors remain undiscovered, our results
highlight the association between genetic profiles
derived from 40 markers and athletic qualities (genes
ACE (154363 —alleles A, G, C); AGT (rs699 — alleles
A, G); GALNTLG (1rs558129 — alleles A, G); NRIH3
(rs7120118 — alleles T, C); NFIA-AS2 (rs1572312 —
alleles G, T); NOS3 (rs1799983 — alleles T, G, A);
KCNJII (rs5219 — alleles T, C, A, G); GABPBI
(rs7181866 — alleles A, G); GNB3 (rs5443 — alleles
T, C); BDKRB2 (rs1799722 — alleles C, T, G); IL6
(rs1800795 —alleles C, G, T); ADRB3 (rs4994 —alleles
A, G); ACTN3 (151815739 —alleles C, A, T); AMPD1
(rs17602729 — alleles G, A, T); AQP1 (rs1049305 —
alleles G, A, C); PPARGC1A4 (rs8192678 — alleles G,
A); PPARG (rs1801282 — alleles C, G, T); PPARA
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(rs4253778 — alleles G, C, T); TTN (rs10497520 —
alleles T, C, A); ACVRIB (rs2854464 — alleles
A, C, G); FTO (1rs9939609 — alleles T, A); HIFIA
(rs11549465 — alleles C, T); ADRB2 (rs1042713 —
alleles G, A, C); NOS3 (152070744 — alleles T, C);
EPASI (rs1867785 — alleles A, G); UCP2 (rs660339
— alleles G, A); GSTPI (rs1695 — alleles A, G, T);
HFE (151799945 — alleles C, G, T); ACE (rs4311
—alleles T, C); ADRB2 (rs1042713 — alleles G, A,
C); VEGFA (rs2010963 — alleles C, G, T); VEGFR2
(rs1870377 — alleles T, A); DRD2 (rs1079597 —
alleles C, T); HTRIB (rs11568817 — alleles A, C);
SLC6A2 (rs2242446 — alleles C, G, A, T); TPH2
(rs7305115 —alleles A, G, C, T); NR3C2 (rs2070951
—alleles G, A, C, T); SHT1A4 (rs6295 — alleles C, G,
A); COL6AI (135796750 — alleles T, C, G), based
on scientifically validated results.

The genetic panel of genes responsible
for strength, speed, and endurance represents
an innovative approach to optimizing athletic
training. With its rich history and cultural heritage,
Kazakhstan has unique national sports essential to
Kazakh identity and traditions. Statistics have shown
that boxing, Greco-Roman wrestling, weightlifting,
and judo are the most practiced sports in Kazakhstan.
Popular national sports include Kokpar, Audaryspak,
Tenge Ilu, Zhamby Atu, Alaman Baiga, Asyk Atu,
Togyz Kumalak, and others. Future research on
genetic markers associated with Kazakh national
sports will provide deeper insights into the physical
characteristics and heritability of physical abilities
in this population. This can aid in developing
individualized approaches to training, selecting
sports disciplines, and optimizing performance in
these sports.
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