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Source reconstruction of electrical brain activity  
during attention network task performance

Abstract: Major Depressive Disorder (MDD) significantly affects mood, thought processes, and behavior. 
Understanding the neurophysiological mechanisms behind depression is essential for developing effective 
treatments. In this study, we compared source reconstruction of electroencephalography (EEG) data 
collected during Attention Network Task (ANT) performance from individuals with MDD, healthy controls, 
and those at risk of developing MDD. Our goal was to analyze the localization of alpha rhythm, particularly 
in relation to the P300 component. Preliminary findings revealed distinct differences in brain activation 
patterns among the three groups in key brain areas, particularly the Anterior Cingulate Cortex (ACC) and 
the Dorsolateral Prefrontal Cortex (DLPFC). Significant group effects in alpha source activity during the 
P300 interval were observed in response to both congruent and incongruent stimuli. One-way ANOVA 
results revealed notable differences in alpha activation in the Anterior Prefrontal Cortex (BA10) and ACC 
(BA24) between MDD and control groups, highlighting potential challenges in higher-order cognitive 
functions such as decision-making. Increased alpha activation in the Inferior Frontal Gyrus (BA45) in the 
MDD group suggests possible language processing difficulties. Furthermore, enhanced activation in the 
medial and dorsolateral prefrontal cortices aligns with their roles in task switching and inhibition. In the 
incongruent condition, significant differences were more pronounced, particularly in the Right Dorsolateral 
Prefrontal Cortex (BA9) and Right Anterior Prefrontal Cortex (BA10), which are vital for executive 
functions. The MDD group exhibited larger alpha source activation in the ACC, indicating reduced brain 
activation that may impair attention and task management. These preliminary findings are consistent with 
existing literature on altered alpha source activity in MDD, supporting the notion of cognitive and emotional 
processing differences in this population. Thus, our study demonstrates distinct differences in alpha source 
localization during the ANT, revealing significant variations in brain activation patterns related to stimulus 
congruence, particularly in the ACC and DLPFC across the three participant groups.
Key words: electroencephalography source localization, cognition, Attention Network Task (ANT), P300 
component, Major Depressive Disorder (MDD).

Introduction

Major Depressive Disorder (MDD) is a complex 
mental health condition that greatly impacts mood, 
thinking, and behavior, as defined in the DSM-5 [1], 
with about 5% of adults experiencing this disorder 
worldwide [2,3]. The DSM-5 [1] includes cognitive 
dysfunction assessments as part of MDD diagnosis. 
Attentional impairments are prominent in MDD and 
may relate to impaired neuronal networks for alerting, 
orienting, and executive control [4]. A meta-analysis 
by Sinha et al. [5] shows that participants with 
depression exhibit differences in executive network 
functioning compared to healthy controls, aligning 
with previous studies on attention and depression. 
Executive control, crucial for cognitive functions 

such as emotion regulation and concentration, is 
often impaired in depressive patients [6-8]. Some 
studies suggest that depressed individuals tend to 
have a bias toward focusing on negative information 
[9]. However, Sinha et al. [5] agree with Mineka 
& Sutton’s view [10] that anxiety, not depression, 
is linked to attentional bias for threatening stimuli. 
Instead, depressed individuals may struggle to 
disengage from negative information once attended 
[11-12], a difficulty related to executive control to a 
greater extent than to orienting. 

The Attention Network Task (ANT) is a valuable 
tool for studying disorders involving attentional 
deficits including MDD [13]. The ANT is designed 
to be emotionally neutral, as such findings regarding 
executive control deficits do not pertain to emotional 
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content perceived or remembered. The ANT is 
used to assess three main attention networks: the 
Executive Control Network, the Alerting Network, 
and the Orienting Network. The Executive Control 
Network is crucial in detecting targets and resolving 
conflicts, mainly involving the medial frontal and 
anterior cingulate cortices [14]. The efficiency of 
the Executive Control Network is measured by 
looking at response times (RTs) for congruent versus 
incongruent stimuli, often using a flanker task [15]. 
The Alerting Network is connected to arousal and 
involves several brain areas, including the brainstem 
(especially the locus coeruleus), thalamus, and various 
frontal and parietal lobe regions [16]. Its efficiency is 
evaluated by comparing RTs in cued versus uncued 
situations [17]. The Orienting Network helps select 
stimuli based on their location or modality, relying on 
structures such as the pulvinar and superior colliculus 
[18]. Its efficiency is assessed by examining RT 
differences between spatial and central cues [19].

Electroencephalography (EEG) source analysis is 
an effective method for investigating neural sources 
that influence cognitive processes in depression. 
EEG studies provide information about the timing 
and coordination of brain activity during cognitive 
tasks and show how different regions interact. 
This approach is complemented by connectivity 
studies, which explore the functional and structural 
relationships between brain areas. Together, they 
enhance our understanding of neural networks and 
how connectivity disruptions may contribute to 
cognitive impairments, particularly in conditions 
such as MDD. Wu et al. [20] conducted a systematic 
validation study using resting-state EEG signals and 
highlighted the reliability of resting-state EEG as a 
biomarker for detecting MDD.

Several studies have examined changes in 
functional connectivity within and between 
brain networks in individuals with depression. 
Specifically, Shim et al. [21] and Miljevic et al. 
[22] reported disrupted network connectivity, 
while Knyazev et al. [23] identified the impact of 
depression on specific brain networks, particularly 
the connection between task-positive and task-
negative networks. EEG measures have also been 
utilized to explore the neurophysiological features 
of depression. Lee et al. [24] and Akar et al. [25] 
have demonstrated associations between changes 
in EEG power, connectivity measures, nonlinear 
properties, and depressive symptoms. Whitton et al. 
[26] examined functional connectivity using EEG 
in individuals with depression, finding abnormally 
high-frequency communication among large-scale 

functional networks, which provides insights into 
disturbances in neural communication. The findings 
indicate that neural activity and connectivity changes 
could be objective markers for assessing depression 
severity and treatment outcomes. Depression is 
significantly influenced by disruptions in functional 
connectivity and network-level dysregulation, which 
highlights the importance of investigating how 
different brain regions communicate and coordinate. 
Moreover, changes in EEG measures, such as power, 
connectivity, and nonlinear properties, provide 
valuable information about the neurophysiological 
basis of depressive symptoms.

We focused on the P300 component, an event-
related potential (ERP) that represents cognitive 
resource allocation and attentional processes. The 
P300 is typically observed in the time window of 
approximately 250 to 500 milliseconds after stimulus 
presentation and is associated with evaluating 
stimulus significance and updating working memory 
[27-29]. Alpha frequency was chosen as a focus of 
our study due to its distinct psychophysiological 
significance and its association with behavioral 
measures, particularly in the context of depression. 
Previous research has shown that alpha peak 
frequency correlates with cognitive performance in 
various tasks, such as visual perception, while alpha 
peak amplitude often reflects synchronous neural 
discharging [30-32]. Notably, it was found that both 
alpha peak amplitude and frequency were related to 
depressive scores, exhibiting different correlation 
patterns influenced by factors such as gender [33, 34].

The aim of this study was to explore the 
specificity in alpha source activity during ANT 
performance in MDD patients compared to healthy 
participants and those at risk of MDD. Previous 
findings indicate individuals with MDD show 
reduced activation in key brain regions during 
conflict resolution tasks compared to controls [35]. 
We expected that alpha source activity in the P300 
interval would show differences between groups. 
Alpha source activity in the P300 interval elicited by 
congruent and incongruent stimuli was expected to 
show specific brain areas related to executive control 
networks. This article presents preliminary results 
for the executive network to introduce the utility of 
the source reconstruction method for finding EEG 
biomarkers of depression. 

Methods and materials

Participants. Participants were 90 adults (72 
female). The average age for females was 22.62 
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(SD=7.26) years, and for males – 24.56 (SD=6.28) 
years. The study was approved by the Ethics 
Committee of the Faculty of Medicine and Health 
Care of the Al-Farabi Kazakh National University. 
After reading the research information purposes and 
instructions, all subjects signed the consent form. 
Based on the Inventory Depression Score [36] and 
an interview with a psychiatrist, participants were 
assigned to 3 equal groups: a control group, at risk 
group, and a group with Major Depressive Disorder 
(MDD).

EEG recording. Neuron-Spectrum-4 system 
(Neurosoft Ltd, Ivanovo) was used to conduct EEG 
recordings during Attention Network Task (ANT) 
performance. The recording was conducted in the 
following scenarios: 1) participants were instructed 
to keep their eyes open for 1 minute, 2) participants 
were instructed to keep their eyes closed for 1 
minute, and 3) participants engaged in a computer 
task for 70 minutes. Ag/AgCl electrodes were 
positioned on the scalp according to the international 
10-20% monopolar system. The electrodes covered 
the left and right frontal, central, parietal, and 
occipital regions, specifically F3, F4, F7, F8, C3, 
C4, P3, P4, O1, O2, FPz, Fz, FCz, Cz, CPz, Pz, and 
Oz. Two electrodes were employed to record the 
electrooculogram, capturing vertical and horizontal 
eye movements. Electrode resistance was monitored 
throughout the recording, ensuring it remained below 
5kΩ. Data were acquired at a sampling rate of 500 
Hz, and a bandpass filter ranging from 0.01 to 30 Hz 
was applied throughout the recording.

Behavioral task. The Attention Network Task 
(ANT) was implemented using E-Prime 2.0, building 
on the original design by Fan et al. [37]. This modified 
version includes 96 trials spread across 9 blocks, 
totaling 864 trials lasting 70 minutes. Compared to 
the original 15-minute task, this extension provides 
a more in-depth look at attentional networks. The 
adjusted ANT was validated in a behavioral study by 
Zholdassova et al. [38, 39] to ensure it aligns with the 
characteristics of the local population.

Task structure. Each trial started with a fixation 
cross, followed by a cue stimulus, and a central 
arrow that served as the target. Participants were 
asked to respond quickly and accurately using the 
left and right keys, depending on the direction of the 
arrow. The stimuli were divided into two categories: 
cue types and flanker types. The cue types included 
no cue, double cue, central cue, and spatial cue 
(positioned above or below the fixation). The flanker 
types consisted of congruent, incongruent, and 
neutral stimuli.

EEG analysis. Preprocessing. EEG data were 
analyzed using EEGLAB [40]. The preprocessing 
steps ensured quality of the EEG data and the 
extraction of relevant features. Preprocessing 
included filtering out high and low frequencies, using 
Independent Component Analysis (ICA) to remove 
artifacts [41], selecting epochs from –700 to +700 
ms around the stimulus presentation, and performing 
pre-stimulus baseline correction. Artifact-free epochs 
were chosen for paired executive control stimuli 
across three categories: 1) incongruent and congruent 
stimuli, 2) cue and double-cue stimuli, and 3) central 
and spatial signals.

Source reconstruction. Source reconstruction 
was done in Statistical Parametric Mapping (SPM) 
(The MathWorks, Inc.) [42] and involves two main 
phases: forward modeling and inverse modeling, as 
shown in Figure 1. To ensure precise localization 
of the EEG data, we aligned electrode configuration 
with the head model. The forward problem was 
addressed by calculating a lead field matrix, which 
describes how brain activity contributes to the EEG 
signals registered at the scalp.

The Multiple Sparse Priors (MSP) approach 
assumes that only a few sources are active at any 
given time, allowing improved activity localization. 
The Greedy Search (GS) algorithm was employed 
to optimize the MSP method [43]. Time-frequency 
analysis was used to combine temporal and frequency 
data, which allowed localizing evoked activity 
within specific time-frequency windows. The P300 
component, with an interval between 250 and 500 
milliseconds after stimulus presentation, was the 
focus of the analysis.

The source reconstruction process in SPM 
consists of several steps (Figure 2): creation of a 
canonical cortical mesh that serves as a basis for 
projecting the EEG data; 2) the co-registration 
step with visualization of several key components, 
including MRI fiducials (in pink), sensor fiducials 
(in blue), sensor locations (in green), the canonical 
cortical mesh (in blue), the inner skull surface (in 
red), and the scalp surface (in light brown). This step 
does not require additional parameters when using the 
canonical mesh. However, MNI coordinates for the 
fiducial positions must be provided if a non-standard 
mesh or custom sensor positions are involved [44].

The “EEG-BEM” head model was selected for 
the forward model. SPM uses a Boundary Element 
Method (BEM) to visualize the cortical mesh and the 
brain, skull, and scalp surfaces, marking the electrode 
positions for clarity [45-46]. In the inversion process, 
SPM computes the lead field matrix and inverts 
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the forward model using the MSP algorithm. The 
progress is displayed in real time in the MATLAB 
command window. The graphical output includes a 
Maximum Intensity Projection (MIP) of activity in 
the source space and a time series of activity for each 
condition.

The reconstruction process estimates the cortical 
current sources responsible for the electrical activity 
detected by EEG, involving building a standard 
head model, co-registering it with the EEG data, and 
constructing a forward model to understand how brain 
sources appear on the EEG sensors. The inversion 
within a Bayesian framework using MSP was applied, 

focusing on a time window of [250 to 500] ms and [8 to 
12] Hz, as it provides valuable insights into attentional 
and cognitive processing. Finally, SPM was used to 
generate source power images and apply cortical 
smoothing to enhance the analysis [47-48]. After 
preprocessing the EEG data and conducting source 
analysis, statistical analysis was performed, focusing 
on the P300 component within the alpha frequency 
range. This analysis examined the relationship and 
differences between EEG features and experimental 
conditions. A one-way analysis of variance (ANOVA) 
was used to assess the main effects and interactions 
among these factors. 

                                  a                                                                   b                                                                 c
Figure 1 – Source reconstruction in SPM (a) cortical mesh; (b) co-registration  

of electrodes; (c) “EEG-BEM” head model

Results and discussion

Demographic and clinical data. Table 1 
summarizes the demographic data of the participants.

Individual source reconstruction and maximum 
intensity projection (MIP). In this study, source 
localization techniques and maximum intensity 
projection (MIP) were used for each of the 90 
participants to explore how their brains responded 
to two types of stimuli: congruent and incongruent. 
Figures 2 and 3 show examples of individual 
source localizations and MIP graphs. The MIP 
graphs provide a clear visual representation of the 
maximum activation intensity across the scalp, 
revealing distinct brain activation patterns for each 

stimulus type. The MIP at 300 ms post-stimulus 
reveals significant activation in each participant 
group’s frontal and parietal regions, which indicates 
substantial engagement during attentional processing 
of the stimulus.

Individual source reconstruction and MIP were 
computed for post-stimulus latency 0-700 ms to 
visualize spatial distribution. Time series data were 
extracted from the voxel with the largest magnitude 
signal within key brain regions identified from the 
MIP. MIP in subjects from three groups showed 
different latencies: control group – 464 ms, risk group 
– 474 ms, MDD group – 342 ms. These individual 
results will be used in the statistical analysis of group 
differences in the next steps of our study.
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Table 1 – Demographic and clinical data of the participants

Group Total 
Participants

Female 
Participants

Male 
Participants

Avg. Age 
(Female), 

years

SD (Female), 
years

Avg. Age 
(Male), years

SD (Male), 
years

Control 30 24 6 20.71 4.50 23.00 5.45
Risk 30 24 6 23.33 8.27 26.83 7.01
MDD 30 24 6 23.83 7.98 23.83 5.61
Total 90 72 18 - - - -

   a                                                       b                                                           c                                                   d      
Figure 2 – Individual source reconstruction and maximum intensity projection (MIP)  

for one participant from the Control group for (a,b) congruent stimulus; (c,d) incongruent stimulus

                    a                                                                 b                                                               c
Figure 3 – Individual source reconstruction and maximum intensity projection (MIP)  

for participants from the (a) Control group; (b) the Risk group; (c) the MDD group
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Condition and group effects. A one-way ANOVA 
analysis for the congruent condition revealed 
significant differences in the comparison “MDD 
vs. Healthy” in several brain regions: the Anterior 
Prefrontal Cortex (BA10), the Anterior Cingulate 
Cortex (ACC, BA24), and the Inferior Frontal Gyrus 
(BA45) (Fig. 4, Table 2).

A one-way ANOVA analysis for the incongruent 
condition revealed significant differences in the 
comparison “MDD vs. Healthy” in several brain 
regions: the Anterior Cingulate Cortex (ACC, 
BA24), the Medial Prefrontal Cortex (mPFC, 
BA10), and the Right Angular Gyrus (BA39) (Fig. 
5, Table 3).

  
a b c

Figure 4 – Brain areas with significant differences (a) MDD vs Healthy; 
(b) MDD vs Risk; (c) Risk vs Healthy

Table 2 – Brain areas with significant differences: MDD vs Healthy, MDD vs Risk, Risk vs Healthy

No. Coordinates Brain area p-value

MDD vs Healthy

1 0 2 22 Anterior prefrontal cortex (BA10)

p<0.050
2 4 10 22 Anterior prefrontal cortex (BA10)

3 0 -24 24 Anterior cingulate cortex (BA24)

4 -52 20 2 Left Inferior Frontal Gyrus (BA45)

MDD vs Risk

1 0 2 20 Medial Prefrontal Cortex (BA9)
p<0.050

2 46 24 4 Dorsolateral Prefrontal Cortex (DLPFC) (Right BA46, BA45)

Risk vs Healthy

1 2 -38 20 Anterior Cingulate Cortex (BA24 or BA32)

p<0.0502 22 94 -16 Right Visual (BA18)

3 12 -92 -8 Right Visual (BA18)
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a b c

Figure 5 – Brain areas with significant differences (a) MDD vs Healthy;  
(b) Risk vs MDD; (c) Risk vs Healthy

Table 3 – Brain areas with significant differences: MDD vs Healthy, Risk vs MDD, Risk vs Healthy

No. Coordinates Brain area p-value

MDD vs Healthy

1 2 4 24 Anterior Cingulate Cortex (ACC) (BA24)

p<0.012

2 -4 -22 26 Anterior Cingulate Cortex (ACC) (BA32)

3 -4 -34 24 Medial Prefrontal Cortex (mPFC) (BA10)

4 -32 -66 48 Superior Parietal Lobule and Precuneus (BA7)

5 32 -62 48 Right Angular Gyrus (BA39)

Risk vs MDD

1 20 -56 54 Right Superior Temporal Gyrus (BA22)

p<0.003

2 8 -60 60 Superior Parietal Lobule and Precuneus (BA7)

3 -16 -58 62 Superior Parietal Lobule and Precuneus (BA7)

4 -18 -58 62 Superior Parietal Lobule and Precuneus (BA7)

5 -14 -66 54 Superior Parietal Lobule and Precuneus (BA7)

6 38 52 0 Right Anterior Prefrontal Cortex (BA10)

7 40 52 -8 Right Anterior Prefrontal Cortex (BA10)

8 40 42 6 Right Dorsolateral Prefrontal Cortex (BA46)

9 26 -92 -16 Right-Visual(BA18)

10 20 -88 -12 Right-Visual(BA18)

11 -42 24 36 Left Dorsolateral Prefrontal Cortex (BA9)

12 4 -40 18 Medial Prefrontal Cortex (mPFC) (BA10)

13 -2 -34 18 Medial Prefrontal Cortex (mPFC) (BA10)

Risk vs Healthy

1 22 -56 52 Superior Parietal Lobule and Precuneus (BA7)

p<0.015

2 20 -66 58 Superior Parietal Lobule and Precuneus (BA7)

3 8 -60 60 Superior Parietal Lobule and Precuneus (BA7)

4 -22 -62 52 Superior Parietal Lobule and Precuneus (BA7)

5 -6 -52 62 Superior Parietal Lobule and Precuneus (BA7)

6 2 -40 18 Medial Prefrontal Cortex (mPFC) (BA10)
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The aim of this study was to explore the 
specificity in alpha source activity during Attention 
Network Task (ANT) performance in Major 
Depressive Disorder (MDD) patients compared to 
healthy participants and those at risk of MDD. The 
study did not address gender differences. Our results 
revealed significant group effects in alpha source 
activity in the P300 interval elicited by congruent 
and incongruent stimuli. The individual MIP graphs 
illustrate distinct brain activation patterns for each 
stimulus type, with significant activation in the frontal 
and parietal regions of all participant groups at 300 
ms post-stimulus, indicating substantial engagement 
during attentional processing.

The one-way ANOVA results for the congruent 
condition between the MDD and control groups 
showed significant differences in the alpha source 
activation in the Anterior Prefrontal Cortex (BA10) 
and Anterior Cingulate Cortex (BA24), suggesting 
challenges in higher-order cognitive functions, 
such as decision-making and attentional switching 
[4, 49]. Increased alpha source activation in the 
Inferior Frontal Gyrus (BA45) in the MDD group 
may be evidence of language processing challenges 
[50]. Significant activation in the Medial Prefrontal 
Cortex (BA10) and Dorsolateral Prefrontal Cortex 
(BA46) in MDD align with research which showed 
the DLPFC is critical for functions such as task 
switching, inhibition, and working memory, which 
are important for resolving conflicts in congruent 
scenarios [50].

The analysis of one-way ANOVA results 
for the incongruent condition highlights greater 
significant differences between MDD and healthy 
control groups. The Right Dorsolateral Prefrontal 
Cortex (BA9) and Right Anterior Prefrontal 
Cortex (BA10) are crucial for executive functions, 
including cognitive flexibility, decision-making, 
and attentional control [51-52]. Furthermore, larger 
alpha source activation of the Anterior Cingulate 
Cortex (ACC) in the MDD group suggests lower 
brain activation, which may affect attention and task 
management in depression. The Medial Prefrontal 
Cortex (mPFC) is involved in self-referential 
thinking and decision-making [53], while the 
Superior Parietal Lobule and Precuneus (BA7) and 
Right Angular Gyrus (BA39) reflect visual and 
motor functions [54].

The results of our study are consistent with existing 
literature indicating altered alpha source activity in 
patients with MDD. Pizzagalli et al. [55] found that 
MDD patients exhibit higher alpha activity in certain 
brain regions compared to healthy controls, reflecting 
underlying cognitive and emotional processing 
differences. Additionally, patients with MDD showed 
distinct EEG patterns, including lower alpha band 
connectivity and higher gamma band connectivity, 
indicating altered brain activation in regions such as 
the ACC during attention-related tasks [56].

Limitations. There are limitations to consider 
in this study. First, this article focused only on the 
alpha wave frequency and the P300 component and 
presented preliminary results. Further analysis will 
explore other frequency bands and waves in response 
to other stimuli. Second, a standardized “EEG-BEM” 
(Boundary Element Model) head model was used for 
source reconstruction. The model might not capture 
the participants’ individual differences in brain 
anatomy. In the next steps, personalized head models 
will be used.

Conclusion

Our examination of the P300 component at 
alpha frequency during performance of the Attention 
Network Task (ANT) showed distinct differences 
in source localization across three groups: control, 
individuals with Major Depressive Disorder (MDD), 
and those at risk of developing MDD. Our findings 
revealed that brain activation patterns varied 
significantly when comparing responses to congruent 
versus incongruent stimuli, particularly in areas such 
as the Anterior Cingulate Cortex (ACC) and the 
Dorsolateral Prefrontal Cortex (DLPFC).
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