The effect of TDI, PTMG and DMPA on the physico-mechanical properties of polyurethane dispersion containing aromatic isocyanate

E. S. Negim, T. Ketegenov, G. S. Irmukhametova, I. N. Sultanbekova, T. N. Tastambekova, G. A. Mun

Abstract


The present paper relates to environment-friendly polyurethane dispersion having a high solids content of polyurethane polymer based on aromatic isocyanate. A series of water dispersion polyurethanes (PUDs) were prepared by polyaddition reaction using toluene diisocyanate (TDI), poly(oxytetramethylene) glycol (PTMG), and dimethylol
propionic acid (DMPA). Physico-mechanical properties of PUDs were studied by average particle size, viscosity, contact angle, tensile strength and elongation. IR spectroscopy was used to check the end of polymerization reaction and characterization of polymer. Results revealed that tensile strength, tear strength, hardness, contact angle and viscosity increase with increase of the amount of TDI, PTMG and DMPA in the PUDs. Elongation at break and average particle size decrease with increase of TDI, PTMG and DMPA. The increase of physico-mechanical properties are attributable to the increase of free NCO content and hard segment in the prepolymer of high content of TDI, PTMG and DMPA.

Keywords


polyurethanes; dispersions; mechanical properties; physical properties; TDI

Full Text:

PDF

References


M.F. Sonnenschein, N. Rondan, B.L. Wendt, J.M. Cox, J. Polym. Sci. Part A: Polym. Chem., 42, 271, (2004).

R. Ilaboya, L. Umukoro, F.E. Omofuma, E. Atikpo, World Applied Sciences Journal, 14(1), 167-174, (2011).

T.K. Chen, Y.I. Tien, K.H.Wei, Polymer, 41, 1345, (2000).

K.S.R. Murthy, R. Marayya, World Applied Sciences Journal, 12(3), 358-363, (2011).

T.Tawa, S. Ito, Polymer J., 38, 686, (2006).

Y.S.Kwak, E. Kim, B.H. Yoo, H.D. Kim, J. AppliPolym Sci., 94, 1743, (2004).

L.Wang, S.Yiding, L.Xiaojuan, L.Min, Journal of polymer research, 18(3), 469-476, (2011).

Vanessa Durrieu, Alessandro Gandini, Mohamed Naceur Belgacem, Anne Blayo, Gilles Eisele, Jean-Luc Putaux. Journal of Applied Polymer Science, 94, 700–710, (2004).

Da-Kong Lee, Hong-Bing Tsai, Ruey-Shi Tsai, Polymer Engineering & Science, 46(5), 588-593, (2006).

El-SayedNegim, LyazzatBekbayeva, Grigority A. Mun, Zhalyrkasyn A. Abilov, Muhammad IdirisSaleh, World Applied Science Journal, 14(13), 402-407, (2011).

K.Piotr, B. P. Pitera, EurPolym J., 37, 251, (2001).

El-Sayed, M. Negim, Mahyuddin Ramli, Bahruddin Saad, Lyazzat Bekbayeva and Muhammad I. Saleh, World Applied Sciences Journal, 12(8), 1145-1150, (2011).

El-Sayed, M. Negim, S. Bahruddin, R. Mahyuddin and M. S. Idiris, Journal of Applied Polymer Science, 121(8-13), 8-13, (2011).

K. Tharanikkarasu, B.K. Kim, J Appl Polym Sci., 73, 2993, (1999).

D.J. Hourston, G.D. Williams, R. Satguru, J.C. Padget, D. Pears, J ApplPolym Sci., 74, 556, (1999).

T.C. Wen, Y.J. Wang, T.T. Cheng, C.H. Yang, Polymer, 40, 3979, (1999).

S. Zhang, L. Cheng, J. Hu, J ApplPolym Sci., 90, 257, (2003).

S.A. Madbouly, J.U. Otaigbe, A.K. Nanda, D.A. Wicks, Macromolecules, 38, 4014, (2005).

G. Oertel, Polyurethane Handbook. 2nd ed. New York: Hanser Publishers, (1994).

ASTM D 2572, Standard method of test for isocyanate group in urethane materials or prepolymer, (1979).

T.Harjunalanen, M. Lahtinen, EurPolym J., 39, 817, (2003).

M.B. Fernanda, C.D. Marcia, Polym Degrad and Stab, 70, 49, (2000).

F.M.B. Coutinho, M.C. Delpeh, Polym Test, 15, 103, (1996).

S. Subramani, Y.J. Park, I.W. Cheong, J.H. Kim, Polym Int., 53, 1145, (2004).

B.K. Kim, J. Ch. Lee, J. Appl. Polym. Sci., 58, 1117, (1995).

C.E. Wilkes, C.S.Yusek, Journal of Macromolecular Science and Physics, B7, 157-175, (1973).

K. Syrmanova, E. Negim, J. Kaldybekoekova and A.M. Tuleuov. Epoxylitane Compositions Modification with Using Thermoplastic Polyurethane. Oriental Journal of Chemistry, 32,

, (2016).