Intracellular localization, accumulation and distribution of heavy metals in plants

  • S. D. Atabayeva Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • S. Sh Asrandina Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • R. A. Alybaeva Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • S. A. Shoinbekova Al-Farabi Kazakh National University, Almaty, Kazakhstan


Heavy metals uptake, distribution and accumulation processes in plants are very important for their impact on physiological and biochemical processes and, consequently, on plant growth and development. The distribution of heavy metals in plant parts and cell organelles are discussed. There are detoxification mechanisms in cell compartments, like binding with cell wall, with organic acids in vacuoles, complexes with phytochelatins and etc. What proportion of given metal ions would be the in free form, and what – bound with organic molecules; it depends from pH of the environment and chemical properties of element. The stability of metals complexes decreases in the case of deviation pH of environment from neutral: at low pH there is a competition of protons with metal ions for binding sites in molecules, at high pH – by the reason of the competition of hydroxyl groups with ligand.


1. Ayari F., Hamdi H., Jedidi ., Gharbi N., Kossai R. Heavy metal distribution in soil and plant in municipal solid waste compost amended plots // Int. J. Environ. Sci. Tech. – 2010. – 7 (3). – P. 465-472.

2. Tangahu B.V., Abdullah S.R.S., Basri H., Idris M., Anuar N., Mukhlisin M. Review on heavy metals (As, Pb, and Hg) uptake by plants through
phytoremediation // International Journal of Chemical Engineering. – 2011. – Article ID 939161, 31 p. doi:10.1155/2011/939161

3. Seregin I.V., Ivanov V.B. Physiologicheskie aspekti toxicheskogo deistvia rfdmia i svinsa na visshie rastenia // Russian Plant Physiology. – 2001. – T. 48. – S. 606-630.

4. Kvesitaze G.I, Hatisashvili G.A., Sadunishvili T.A., Evstigneeva Z.G. Metabolism antropogennyh toksikantov v vysshih rasteniah. – M.: Nauka, 2015. – 197 p.

5. Maksimović I., Kastori R., Krstić L., Luković J. Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings // Biol. Plant. – 2007. – Vol. 51. – P. 589-592.

6. Seregin I.V., Kozhevnikova A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium // Russ. J. of Plant Physiol. – 2008. – Vol. 55. – P. 1–22.

7. Lux A., Martinka M., Vaculik M., White P.J. Root responses to cadmium in the rhizosphere: a review. – J. Exp. Bot. – 2011. – Vol. 62 – P. 21–37.

8. Gallegoa S.M., Penaa L.B., Barciaa R.A., Azpilicuetaa C.E., Iannonea M.F., Rosalesa E.P., Zawoznika M.S., Groppaa M.D., Benavidesa M.P.
Unraveling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. – Env. Exp. Bot.- 2012. – Vol. 83. – P. 33–46.

9. White M.C., Decker A.H., Chaney R.L. Metal complexation in xylem fluid. I. Chemical composition of tomato and soybean stem exudate // Plant Рhysiol. – 1981. – Vol. 67. – P. 292-300.

10. Seregin I.V., Ivanov V.B. Geohimicheskie metali. Izuchenie rasprostraneniya kadmiya i svinca v rasteniyah // Fiziol. rast. – 1997. – Т. 44, № 6. – S. 915-921.

11. Baker, A.J.M., McGrath S.P., Sidoli C.M.D., Reeves R.D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal- accumulating crops // Resources, Conservation
Recycling. – 1994. – No. 11. – P. 41-49.

12. Neumann D., Zur Nieden U. How does Armeria maritima tolerate high heavy metal concentrations? // Plant Physiol. – 1995. – Vol. 146, № 5-6.
– P. 704-717.

13. Ebbs S., Lau J., Ahner B. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens // Planta. – 2002. – Vol. 214. – P. 635-640.

14. Hose E., Clarkson D.T., Steudle E. The exodermis: a variable apoplastic barier // J. Exp. Bot. – 2001. – Vol. 52. – P. 2245-2264.

15. Vogel-Lange R., Wagner G.J. Subcellular localiztion of cadmium and cadmium binding peptides in tobacco leaves // Plant Physiol. – 1996. – Vol. 92. – P. 1086-1093.

16. Yadav K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants // South African Journal of Botany. – 2010. – Vol. 76. – P. 167–179.

17. Shao, H.B., Chu, L.Y., Lu, Z.H., Kang, C.M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells //
International Journal of Biological Science, 2008. – Vol. 4. – P. 8–14.

18. Sela M., Tel-Or E., Fritz E., Hutterman N. Localization and toxic effects of cadmium, copper and uranium in Azolla // Plant Physiol. – 1998. – Vol. 88. – P. 30-36.

19. A. Manara A. Plant responses to heavy metal toxicity. In: A. Furini (ed.), Plants and heavy metals. – Springer Briefs in Biometals, 2012. – P. 27-53. doi: 10.1007/978-94-007-4441-7_2

20. Reed R., Darring S. Physiological response of ship-fouling and non-fouling isolates of Entermorpha compressa to copper // Heavy Metals Environ. Intern. Conf. Heidelberg. Edinburg, 1983. – Vol. 69. – P. 322-325.

21. Samardakiewicz S., Wozny B. The distribution of lead in duckweed (Lemna minor L.) root tip // Plant and Soil. – 2000. – Vol. 226. – P. 107-111.

22. Kupper H., Zhao F.J., McGrath S. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caеrulescens // Plant Physiol. –
1999. – Vol. 119. – P. 305 – 312.

23. Dahmani-Muller H, Van-Oort F, Gelie B, Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter // Environ Pollut. – 2000. – Vol. 109. – P. 231-238.
How to Cite
ATABAYEVA, S. D. et al. Intracellular localization, accumulation and distribution of heavy metals in plants. International Journal of Biology and Chemistry, [S.l.], v. 8, n. 2, p. 9-12, dec. 2015. ISSN 2409-370X. Available at: <>. Date accessed: 18 sep. 2020. doi:


intracellular localization; heavy metals; distribution; accumulation