The technology of using plants to clean up soil
Keywords:
phytoremediation, phytoextraction, hyperaccumulation, heavy metalsAbstract
Review article analyzes the recent literature on the phytoremediation of soils contaminated with heavy metals. Provides information about the plants hyperaccumulators of heavy metals for phytoremediation, opportunities of using energy crops and chelating agents in phytoremediation, as well as the advantages and disadvantages of phytoremediation technology.References
1 Panin MS The influence of anthropogenic factors and human activities on the agrochemical content and migration of heavy metals in the “soilplant” // Proceedings of the scientific-technical. Conf. “The state and the rational use of soil of the republic of Kazakhstan.” – Almaty, 1998. – P. 76-79 (In Russian).
2 Tasekeev M. Bioremediation of toxic industrial waste / / Industry of Kazakhstan. – 2004. – № 5 (26). – Pp. 59-63. (In Russian).
3 Chaney R.L., Li Y. M., Scott J.A. Improving metal hyperaccumu¬lator wild plants to develop commercial phytoextraction systems: Approaches and Progress. – New York, 1998. – 37 p.
4 Wenzel W., Adriano D., Salt D., Smith R. Phytoremediation: A plant-Microbe-based remediation system // Bioremediation of Contaminated Soils. Agronomy Monograph no 37. – 2000. – 508 p.
5 Ghosh M., Singh S.P. A review on phytoremediation of heavy metals and utilization of its by products // Applied ecology and environmental research.– 2005. –Vol. 3(1). – P. 1-18.
6 Terry N., Carlson C., Raab T.K., Zayed A.M. Rates of selenium volatilization among crop species // J. Environ. Qual. – 1992. – № 21. – P. 341-344.
7 Terry N., Zayed A.M. Selenium volatilization in plants. // Sеlenium in the Environment (Ed. Frankenberger Jr.W., Benson S.) – New York, 1994. – P. 343-367.
8 Raskin I. Plant genetic engineering way help with environmental cleanup // Proc. Nat. Acad.Sci. USA. 1996. – № 93. – P. 3164-3166.
9 Raskin, I., Smith R.D. and D.E. Salt. Phytoremediation of metals: Using plants to remove pollutants from the environment. – Curr. Opin. Biotechnol. -1997- 8(2). – P. 221-226.
10 Huang J.W., Cunningham S.D. Lead phytoextraction: Species variation in lead uptake and translocation // New Phytol. – 1996. – №.134. – Pp. 335-342.
11 Chaney R.L., Ryan J.A. Risk based standarts for arsenic, lead and cadmium in urban soils.DECHEMA, Frankfurt // New Phytol. – 1994. – №.103. – P. 1305-1309.
12 Sarret G., Saumitou-Laprade P., Bert V., Proux O., Hazemann J.-L., Traverse A., Matthew A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri // Plant Physiol. – 2002. – Vol. 130. – P.1815-1826.
13 Ernst W. Physiology of metal resistance in plants // Proc. Int.Conf. on Heavy Metals in the environment. – Toronto, Canada, 1975. – Vol. 11. – Р. 121-136.
14 Li Y.M., Chaney R., Brewer E., Roserberg R., Angle J.S., Baker A., Reeves R., Nelkin J. Development of a technology for commercial phytoextraction of nickel – economic and technical conciderations // Plant and Soil. – 2003.- Vol. 249. – P. 107-115.
15 Vazquez M.D., Poschenreider C., Barcelo J., Baker A.J., Hatton P., Cope G.H. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens // Bot. Acta. – 1994. – № 107. – P. 243-250.
16 Lombi E., Zhao F.J., Dunham S.J., McGrath S. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense // New Phyt. – 2000. – № 145. – P. 11-20.
17 Brooks R.R. Plants that hyperaccumulate heavy metals // Wallingford, UK:CAB International, 1998. – 53 p.
18 Hamon R.E., Holm P.E., Lorenz S.E., Mc-Grath S.P. Metal uptake by plants from sludgeamended soils: caution is required in the plateu interpretation // Plant and Soil. – 1999. – № 216. – P. 53-64.
19 Lasat M.M., Fuhrman M., Ebbs S.D. Phytoextraction of radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species // J. Environ. Qual. – 2003. – № 27. – P. 165-169.
20 Baker A.J., McGrath S.P., Reeves R.D. Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soils // Contaminated soil and water. – Boca-Raton, Fl., USA: Lewis Publishers, 2000. – P. 85-107.
21 Chaney, R.L, Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S., Baker A.J.M. Phytoremediation of soil metals // Curr. Opin. Biotech. – 1997. – N 8. – P. 279 284.
22 Lai H, Chen Z. Multi-dose applying EDTA to decrease the potential groundwater contamination using rainbow pink (Dianthus chinensis) for enhanced phytoextraction // Desalination. – 2007.- 210, 236-247
23 MN Prasad The practical use of plants for the recovery of the ecosystems, contaminated by metals / / Plant Physiol. – 2003. – T.50, № 5. – C. 764-780.
24 Koopmans G.F, Schenkeveld W.D.C, Song J., Luo Y., Japenga J., Temminghoff E.J.M. Influence of EDDS on metal speciation in soil extracts: measurement and mechanistic multicomponent modeling // Environmental Science Technology. – 2008. – 42 (4). – Pp. 1123-1130.
25 Borggaard O.K, Hansen H.C.B., Holm P.E., Jensen J.K., Rasmussen S.B., Sabiene N., Steponkaite L., Strobel B.W. () Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils // Soil and Sediment Contamination: An International Journal – 2009. – http://www.informaworld.com/smpp/title ~db=all~content=t713401148~tab=issueslist~branc hes=18 - v1818 (3). – Pp. 369 – 382.
26 Purakayastha T.J., Chhonkar P.K. Phytoremediation of heavy metal contaminated soils // Soil Biology. – 2010. -19. – Pp. 389-429.
27 Kvesitadze GI Khatisashvili GA, Sadunishvili TA, Evstigneeva ZG The metabolism of anthropogenic toxicants in higher plants. – Moscow: Nauka. 2005. – 197 p.
28 Vassil A., Kapulnik Y., Raskin I., Salt D.E. The role of EDTA in lead transport and accumulaation by Indian mustard // Plant Physiol. – 1998. – Vol.117. – P. 447-453.
29 Kayser A.K., Wenger A., Keller W. Enchancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendmebts. //Environ. Sci. Technol. – N34. – P. 1178-1783.
30 Platonov V, Proskuryakov VA, VE Savchenko Humic acid, etc. – effective sorbents of heavy metals. – 2006.
31 Grzybowsky W. Comparison between stability constants of cadmium and lesd complexes with humic substances of DL. Erent molecular weight isolated from Baltic Sea water // Oceanologia. – 2000. – Vol. 42(4). – P. 473–482.
32 Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., Jugsujinda, A. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides) // Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. – 2005. – Vol. 40, N. 1. – P.117-137.
33 Lesage E., Meers E., Vervaeke P., Lamsal S., Hopgood M., Tack F.M Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil // Int. J. Phytoremediation.- 2005. – Vol. 7(2). – P.143-52.35.
34 Gulz P.A., Gupta S.K., Schulin R. P-Enhanced Phytoextraction of Arsenic from contaminated Soil using Sunflower // Proceedings of the 7th International Conference on the Biogeochemistry of Trace Elements (7th ICOBTE), 15-19 June 2003, Uppsala, Sweden. Book of Abstracts. – 2003. – Vol I-II. – P. 148-149.
35 Begonia B. Comparative lead uptake and responses of some plants grown on lead contaminated soils. Department of Biology, Jackson State University, Jackson, MS 39217. http://www.msstate.edu/org/MAS/ejour3.html
36 Kos B., Grcman H., Lestan D.. Phytoextraction of lead, zinc and cadmium from soil by selected plants // Plant Soil Environ. – 2003. – Vol. 49. – P. 548–553.
37 Ginneken L.V., Meers Е., Guisson. R., Ruttens A., Elst K., Tack F.M.G., Vangronsveld J., Diels L., Dejonghe W. Phytoremediation for heavy metal contaminated soils combined with bioenergy production // Journal of environmental engineering and landscape management. – 2007. – Vol XV, N4. – P. 227–236.
38 Ow D.W. Heavy metal tolerance genes-prospective tools for bioremediation. – Res. Conserv.Recycling. 1996. – V. 18. – Pp. 135–149.
39 Blaylock M.J., Huang J.W. Phytoextraction of metals. In: Raskin I., Ensley B.D. (Eds.) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. – John Wiley and Sons, New York, 2000. – Pp. 53–70.
40 Kumar, P. B. A. N., Dushenkov, V., Motto, H. and Raskin, I. (1995): Phytoextraction: the use of plants to remove heavy metals from soils. – Environ.Sci. Technol. 29. – Pp. 1232-1238.
41 Nicks L., Chambers M.F. (1994): Nickel farm. – Discover. September. –P.19
42 Kramer U., Cotter-Howels J.D., Charnock J.M., Baker A.J., Smith J.A.C. Free histidine as a metal chelator in plants that accumulate nickel // Nature (London). – 1996. – Vol. 379. – P. 635-638.
43 Iyer, P.V.R., Rao, T.R., Grover, P.D. (2002): Biomass Thermochemical characterization. Third edition, – 38 p.
44 Hetland, M.D., Gallagher, J.R., Daly, D.J., Hassett, D.J., Heebink, L.V. Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson, A., Foote, E.A., Banks, M.K., Magar,
V.S. (Eds.), Phytoremediation, Wetlands, and Sediments, – The Sixth International in situ and on-site Bioremediation Symposium, San Diego, California, 2001, 4–7 June. Battelle Press, Columbus, Richland; pp. 129–136.
45 Raskin I., Smith R.D., Salt D.E. Phytoremediation of metals: using plants to remove pollutants from the environment // Curr. Opin. Biotech. – 1997. – Vol. 8. – P. 221-226.
46 Blaylock M.J., Salt D.E. Dushenkov S., Zakharova O., Gussman C. Enchanced accumulation of Pb in Indian mustard by soil-applied chelating agents // Environ Sci Technol. – 1997. – Vol.31. – P. 860-865.
48 Lasat M.M. The use of plants for the removal of toxic metals from contaminated soils // Environmetal protection agency, New York, 2001. – 33 p.
2 Tasekeev M. Bioremediation of toxic industrial waste / / Industry of Kazakhstan. – 2004. – № 5 (26). – Pp. 59-63. (In Russian).
3 Chaney R.L., Li Y. M., Scott J.A. Improving metal hyperaccumu¬lator wild plants to develop commercial phytoextraction systems: Approaches and Progress. – New York, 1998. – 37 p.
4 Wenzel W., Adriano D., Salt D., Smith R. Phytoremediation: A plant-Microbe-based remediation system // Bioremediation of Contaminated Soils. Agronomy Monograph no 37. – 2000. – 508 p.
5 Ghosh M., Singh S.P. A review on phytoremediation of heavy metals and utilization of its by products // Applied ecology and environmental research.– 2005. –Vol. 3(1). – P. 1-18.
6 Terry N., Carlson C., Raab T.K., Zayed A.M. Rates of selenium volatilization among crop species // J. Environ. Qual. – 1992. – № 21. – P. 341-344.
7 Terry N., Zayed A.M. Selenium volatilization in plants. // Sеlenium in the Environment (Ed. Frankenberger Jr.W., Benson S.) – New York, 1994. – P. 343-367.
8 Raskin I. Plant genetic engineering way help with environmental cleanup // Proc. Nat. Acad.Sci. USA. 1996. – № 93. – P. 3164-3166.
9 Raskin, I., Smith R.D. and D.E. Salt. Phytoremediation of metals: Using plants to remove pollutants from the environment. – Curr. Opin. Biotechnol. -1997- 8(2). – P. 221-226.
10 Huang J.W., Cunningham S.D. Lead phytoextraction: Species variation in lead uptake and translocation // New Phytol. – 1996. – №.134. – Pp. 335-342.
11 Chaney R.L., Ryan J.A. Risk based standarts for arsenic, lead and cadmium in urban soils.DECHEMA, Frankfurt // New Phytol. – 1994. – №.103. – P. 1305-1309.
12 Sarret G., Saumitou-Laprade P., Bert V., Proux O., Hazemann J.-L., Traverse A., Matthew A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri // Plant Physiol. – 2002. – Vol. 130. – P.1815-1826.
13 Ernst W. Physiology of metal resistance in plants // Proc. Int.Conf. on Heavy Metals in the environment. – Toronto, Canada, 1975. – Vol. 11. – Р. 121-136.
14 Li Y.M., Chaney R., Brewer E., Roserberg R., Angle J.S., Baker A., Reeves R., Nelkin J. Development of a technology for commercial phytoextraction of nickel – economic and technical conciderations // Plant and Soil. – 2003.- Vol. 249. – P. 107-115.
15 Vazquez M.D., Poschenreider C., Barcelo J., Baker A.J., Hatton P., Cope G.H. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens // Bot. Acta. – 1994. – № 107. – P. 243-250.
16 Lombi E., Zhao F.J., Dunham S.J., McGrath S. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense // New Phyt. – 2000. – № 145. – P. 11-20.
17 Brooks R.R. Plants that hyperaccumulate heavy metals // Wallingford, UK:CAB International, 1998. – 53 p.
18 Hamon R.E., Holm P.E., Lorenz S.E., Mc-Grath S.P. Metal uptake by plants from sludgeamended soils: caution is required in the plateu interpretation // Plant and Soil. – 1999. – № 216. – P. 53-64.
19 Lasat M.M., Fuhrman M., Ebbs S.D. Phytoextraction of radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species // J. Environ. Qual. – 2003. – № 27. – P. 165-169.
20 Baker A.J., McGrath S.P., Reeves R.D. Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soils // Contaminated soil and water. – Boca-Raton, Fl., USA: Lewis Publishers, 2000. – P. 85-107.
21 Chaney, R.L, Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S., Baker A.J.M. Phytoremediation of soil metals // Curr. Opin. Biotech. – 1997. – N 8. – P. 279 284.
22 Lai H, Chen Z. Multi-dose applying EDTA to decrease the potential groundwater contamination using rainbow pink (Dianthus chinensis) for enhanced phytoextraction // Desalination. – 2007.- 210, 236-247
23 MN Prasad The practical use of plants for the recovery of the ecosystems, contaminated by metals / / Plant Physiol. – 2003. – T.50, № 5. – C. 764-780.
24 Koopmans G.F, Schenkeveld W.D.C, Song J., Luo Y., Japenga J., Temminghoff E.J.M. Influence of EDDS on metal speciation in soil extracts: measurement and mechanistic multicomponent modeling // Environmental Science Technology. – 2008. – 42 (4). – Pp. 1123-1130.
25 Borggaard O.K, Hansen H.C.B., Holm P.E., Jensen J.K., Rasmussen S.B., Sabiene N., Steponkaite L., Strobel B.W. () Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils // Soil and Sediment Contamination: An International Journal – 2009. – http://www.informaworld.com/smpp/title ~db=all~content=t713401148~tab=issueslist~branc hes=18 - v1818 (3). – Pp. 369 – 382.
26 Purakayastha T.J., Chhonkar P.K. Phytoremediation of heavy metal contaminated soils // Soil Biology. – 2010. -19. – Pp. 389-429.
27 Kvesitadze GI Khatisashvili GA, Sadunishvili TA, Evstigneeva ZG The metabolism of anthropogenic toxicants in higher plants. – Moscow: Nauka. 2005. – 197 p.
28 Vassil A., Kapulnik Y., Raskin I., Salt D.E. The role of EDTA in lead transport and accumulaation by Indian mustard // Plant Physiol. – 1998. – Vol.117. – P. 447-453.
29 Kayser A.K., Wenger A., Keller W. Enchancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendmebts. //Environ. Sci. Technol. – N34. – P. 1178-1783.
30 Platonov V, Proskuryakov VA, VE Savchenko Humic acid, etc. – effective sorbents of heavy metals. – 2006.
31 Grzybowsky W. Comparison between stability constants of cadmium and lesd complexes with humic substances of DL. Erent molecular weight isolated from Baltic Sea water // Oceanologia. – 2000. – Vol. 42(4). – P. 473–482.
32 Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., Jugsujinda, A. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides) // Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. – 2005. – Vol. 40, N. 1. – P.117-137.
33 Lesage E., Meers E., Vervaeke P., Lamsal S., Hopgood M., Tack F.M Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil // Int. J. Phytoremediation.- 2005. – Vol. 7(2). – P.143-52.35.
34 Gulz P.A., Gupta S.K., Schulin R. P-Enhanced Phytoextraction of Arsenic from contaminated Soil using Sunflower // Proceedings of the 7th International Conference on the Biogeochemistry of Trace Elements (7th ICOBTE), 15-19 June 2003, Uppsala, Sweden. Book of Abstracts. – 2003. – Vol I-II. – P. 148-149.
35 Begonia B. Comparative lead uptake and responses of some plants grown on lead contaminated soils. Department of Biology, Jackson State University, Jackson, MS 39217. http://www.msstate.edu/org/MAS/ejour3.html
36 Kos B., Grcman H., Lestan D.. Phytoextraction of lead, zinc and cadmium from soil by selected plants // Plant Soil Environ. – 2003. – Vol. 49. – P. 548–553.
37 Ginneken L.V., Meers Е., Guisson. R., Ruttens A., Elst K., Tack F.M.G., Vangronsveld J., Diels L., Dejonghe W. Phytoremediation for heavy metal contaminated soils combined with bioenergy production // Journal of environmental engineering and landscape management. – 2007. – Vol XV, N4. – P. 227–236.
38 Ow D.W. Heavy metal tolerance genes-prospective tools for bioremediation. – Res. Conserv.Recycling. 1996. – V. 18. – Pp. 135–149.
39 Blaylock M.J., Huang J.W. Phytoextraction of metals. In: Raskin I., Ensley B.D. (Eds.) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. – John Wiley and Sons, New York, 2000. – Pp. 53–70.
40 Kumar, P. B. A. N., Dushenkov, V., Motto, H. and Raskin, I. (1995): Phytoextraction: the use of plants to remove heavy metals from soils. – Environ.Sci. Technol. 29. – Pp. 1232-1238.
41 Nicks L., Chambers M.F. (1994): Nickel farm. – Discover. September. –P.19
42 Kramer U., Cotter-Howels J.D., Charnock J.M., Baker A.J., Smith J.A.C. Free histidine as a metal chelator in plants that accumulate nickel // Nature (London). – 1996. – Vol. 379. – P. 635-638.
43 Iyer, P.V.R., Rao, T.R., Grover, P.D. (2002): Biomass Thermochemical characterization. Third edition, – 38 p.
44 Hetland, M.D., Gallagher, J.R., Daly, D.J., Hassett, D.J., Heebink, L.V. Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson, A., Foote, E.A., Banks, M.K., Magar,
V.S. (Eds.), Phytoremediation, Wetlands, and Sediments, – The Sixth International in situ and on-site Bioremediation Symposium, San Diego, California, 2001, 4–7 June. Battelle Press, Columbus, Richland; pp. 129–136.
45 Raskin I., Smith R.D., Salt D.E. Phytoremediation of metals: using plants to remove pollutants from the environment // Curr. Opin. Biotech. – 1997. – Vol. 8. – P. 221-226.
46 Blaylock M.J., Salt D.E. Dushenkov S., Zakharova O., Gussman C. Enchanced accumulation of Pb in Indian mustard by soil-applied chelating agents // Environ Sci Technol. – 1997. – Vol.31. – P. 860-865.
48 Lasat M.M. The use of plants for the removal of toxic metals from contaminated soils // Environmetal protection agency, New York, 2001. – 33 p.
Downloads
How to Cite
Atabaeva, S. D., A. Zh. Beisenova, S. S. Kenjebayeva, S. Sh. Asrandina, and R. Alybaeva. 2013. “The Technology of Using Plants to Clean up Soil”. International Journal of Biology and Chemistry 5 (1):3-12. https://ijbch.kaznu.kz/index.php/kaznu/article/view/73.
Issue
Section
Biology
License
ааа