Effect of methyl methacrylate and butyl methacrylate copolymer on the physico-mechanical properties of acryl syrup for paints

E.S. M. Negim, A. Nurlybayeva, G. S. Irmukhametova, A. Makhatova, A. Basharimova, A. Serikkali, M. Sakhy, R. Iskakov, G. A. Mun


The present study deals with the physico-mechanical properties of acryl syrups paint, which are made from copolymer powder and methyl methacrylate (MMA) monomer. Copolymer powders were used based on MMA and butyl methacrylate (BMA). The effect of copolymer powder to MMA- monomer ratio on the physico-mechanical properties acryl syrup mixes for paint applications was investigated. Testing included pot-life, curing time, viscosity, tensile strength, elongation, water absorption and hardness shore A. The results showed that, not only monomer composition of the copolymer but also the ratio of copolymer to MMA-monomer affected the physico-mechanical properties of acrylic films. The tensile strength, hardness, pot-life, curing time and hardness of the acrylic film increased with the increase of the MMA ratio in copolymer and decrease content of copolymer in acrylic syrup mixes. In conclusion, low copolymer content and high MMA ratio in copolymer (MMA/BMA) powders are desired to produce paint with physico-mechanical properties.


polymethyl methacrylate; syrups; self-curing; acrylic paint

Full Text:

PDF (Russian)


C. Mehmet, P. Seven, Reac. Funct. Polym., 2011. – Vol. 71. – P. 395–401.

M.S. El-Shall, V. Abdelsayed, A.S. Khder, H. Hassan, H.M. El-Kaderi, T.E.J. Reich. Mater. Chem., 2009. – Vol. 19. – P. 7625–7631.

J.R. Potts, S.H. Lee, T.M. Alam, J. An, M.D. Stoller, R.D. Piner, R.S. Ruoff. Carbon, 2011. – Vol. 49. – P. 2615–2623.

R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson. Science, 2005. – Vol. 309. – P. 456–459.

R.P. Kusy. J. Biomed. Mater. Res, 1978. – Vol. 12. – P. 271–276.

DR. Paul, DW Fowler, JT Houston, J. Appl Polym. Sci, 1973. – Vol. 7. – P. 2771–2782.

E.P. Sang, C. Maggie, P.A. Raj. International Journal of Dentistry, 2009. – Vol. 2009. – P. 1-9.

A.S. Hamizah, J. Mariatti. Polymer-plastics technology and engineering, 2009. – Vol. 48. – P. 554–560.

N.J. Dunne, J.F. Orr. ITBM-RBM, 2001. – Vol. 22. – No. 2. – P. 88–97.

D.W. Fowler, A.H. Meyer, D.R. Paul, Low temperature curing of polymer concrete. In: Proceedings of the second international congress on polymers in concrete. Koriyama, Japan: College of Engineering,

Nihon University, 1981. P. 421–434.

G. Odian. Principles of Polymerization. New York, 1991.

K.S. Murthy, K. Kishore, V.K. Mohan. Macromolecules, 1994. – Vol. 27. – No. 24. – P. 109- 7114.

J.D. Peterson, S. Vyazovkin, C.A. Wight, Journal of Physical Chemistry B, 1999. – Vol. 103. – P. 8087-8092.

I. Soten, G.A. Ozin, J.Mater.Chem., 1999. – Vol. 9. – No. 3. – P. 703-710.

P. Ghosh, S.K. Gupta, D.N. Saraf. Chem. Eng. J., 1998. – Vol. 70. – P. 25-35.

F. Zhou, S.K. Gupta, A.K. Ray, J. Appl. Polym. Sci., 2001. – Vol. 81. – P. 1951-1971.

P. Peyser, J. Brandrup, E.H. Immergut, Eds. Polymer Handbook, 3rd ed. Wiley-Interscience, NewYork, 1989, p. VI/219.

S.T. Balke, A.E. Hamielec, J. Appl. Polym. Sci., 1973. – Vol. 17. – P. 905-949.

A. Nurlybayeva, M. Sakhy et al. Int. J. Chem. Sci., 2015. – Vol. 13. – No. 2. – P. 922-934.

Y. Yuan, P. Lee. Surface Science Techniques, 2013. – Vol. 51. – P. 3-34.

L. Valentini et al. Small, 2007. – Vol. 3. – P. 1200.

C. Joachim, J.K. Gimzewski, A. Aviram. Nature, 2000. – Vol. 408. – P. 541.

A. Méndez-Vilas, A.B. Jódar-Reyes, M.L. González-Martín, Small, 5, 1366, (2009).