Brachypodium distachyon as a model plant in wheat rust research
DOI:
https://doi.org/10.26577/2218-7979-2015-8-2-52-55Keywords:
rust infection, Brachypodium distachyonAbstract
All countries share the need to increase wheat yield and tolerance to adverse environmental factors. Rust, the most common infector of wheat, is widely dispersed on the territory of Commonwealth of Independent States (CIS). The data shows that on the territory of following countries: Kazakhstan, Kyrgyzstan, Russia, Belarus, Uzbekistan the percentage of infected wheat with rust from the total amount is approximately 20-25% annually. Brachypodium distachyon can be regarded as a perspective model to study various mechanisms of a rust infection.References
1. Wheat initiative: coordinating global research for wheat. Available at: www.wheatinitiative.org.
2. National symbols of the Republic of Kazakhstan. Available at: www.egov.kz/wps/portal/Content?contentPath=/egovcontent/state_
symbols&lang=en
3. Government approved Agribusiness-2020 Program (from February 12, 2013). Available at: www.primeminister.kz/news/show/29/v-pravitelstve-prinjali-programmu-razvitija-apk-%C2%ABagrobiznes-2020%C2%BB/12-02-2013?lang=en
4. Sinclair W.A., Lyon H.H. Diseases of trees and shrubs. 2nd ed. Ithaca, NY: Cornell University Press, 2005. – 659 p.
5. Peterson P.D. Stem rust of wheat: from ancient enemy to modern foe. US: APS Press, 2001. – 168 p.
6. USDA-ARS Cereal Disease Laboratory Update. Available at: http://www.ars.usda.gov/main/site_main.htm?modecode=36-40-05-00
7. Li C., Rudi H., Stockinger E., Cheng H., Cao M. et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses // BMC Plant Biol., 2012. – Vol. 12. – P. 65.
8. Li C., Rudi H., Stockinger J. et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. Strong population structure characterizes weediness gene evolution in the invasive grass Brachypodium distachyon // Molecular Ecology, 2009. – Vol. 18. – P. 2588-2601.
9. Girin T., David L., Chardin C., Sibout R. et al. Brachypodium: a promising hub between model species and cereals // Journal of Experimental Botany, 2014. – Vol. 65. – No. 19. – P. 5683–5696.
10. Nirmala J., Drader T., Lawrence P.K., Yin C. et al. Concerted action of two avirulent spore effectors activates reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance // Proc. Natl. Acad. Sci. USA, 2011. – Vol. 108. – P. 14676–14681.
11. Figueroa M., Castell-Miller C.V., Li F., Hulbert S.H., Bradeen J.M. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions // Frontiers in plant science, 2015. – Vol. 6. –A. 558. – P. 1-11.
12. The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon // Nature, 2010. –
Vol. 463. – No. 7282. – P. 763–768.
13. Bakker E.G., Montgomery B., Nguyen B., Eide K. et al. Strong population structure characterizes weediness gene evolution in the invasive grass Brachypodium distachyon // Molecular Ecology, 2009. – Vol. 18. – P. 2588-2601.
14. Vain P., Worland B., Thole V. et al. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis» // Plant Biotechnology Journal, 2008. – Vol. 6. – No. 5. – P. 236–245.
15. Lee M.Y., Yan L., Gorter F.A. et al. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein // Journal of General Virology, 2012. – Vol. 93. – P. 2729–2739.
16. Thole V., Worland B., Wright J. et al. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21, 2010 // Plant Biotechnology Journal. – Vol. 8. – No. 6. – P. 734–747.
17. Huo N., Vogel J., Lazo G. et al. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat, 2009 // Plant Mol. Biol. – Vol. 70. – No. 1-2. – P. 47–61.
18. Goddard R., Peraldi A., Ridout C., Nicholson P. Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare) // Mol. Plant Microbe Interact. – Vol. 27. – No. 10. – P. 1095–1106.
19. Hasterock R., Marasek A., Donnison I. et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosomes landing with fluorescence
in situ hybridisation // Genetics, 2006.
20. Wolny E., Hasterock R. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives // Ann. Bot., 2009. – Vol. 104. – No. 5. – P. 873-881.
21. Gordon S., Priest H., des Marais D. et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines // Plant J., 2014. – Vol. 79. – No. 3. – P. 361-374.
2. National symbols of the Republic of Kazakhstan. Available at: www.egov.kz/wps/portal/Content?contentPath=/egovcontent/state_
symbols&lang=en
3. Government approved Agribusiness-2020 Program (from February 12, 2013). Available at: www.primeminister.kz/news/show/29/v-pravitelstve-prinjali-programmu-razvitija-apk-%C2%ABagrobiznes-2020%C2%BB/12-02-2013?lang=en
4. Sinclair W.A., Lyon H.H. Diseases of trees and shrubs. 2nd ed. Ithaca, NY: Cornell University Press, 2005. – 659 p.
5. Peterson P.D. Stem rust of wheat: from ancient enemy to modern foe. US: APS Press, 2001. – 168 p.
6. USDA-ARS Cereal Disease Laboratory Update. Available at: http://www.ars.usda.gov/main/site_main.htm?modecode=36-40-05-00
7. Li C., Rudi H., Stockinger E., Cheng H., Cao M. et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses // BMC Plant Biol., 2012. – Vol. 12. – P. 65.
8. Li C., Rudi H., Stockinger J. et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. Strong population structure characterizes weediness gene evolution in the invasive grass Brachypodium distachyon // Molecular Ecology, 2009. – Vol. 18. – P. 2588-2601.
9. Girin T., David L., Chardin C., Sibout R. et al. Brachypodium: a promising hub between model species and cereals // Journal of Experimental Botany, 2014. – Vol. 65. – No. 19. – P. 5683–5696.
10. Nirmala J., Drader T., Lawrence P.K., Yin C. et al. Concerted action of two avirulent spore effectors activates reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance // Proc. Natl. Acad. Sci. USA, 2011. – Vol. 108. – P. 14676–14681.
11. Figueroa M., Castell-Miller C.V., Li F., Hulbert S.H., Bradeen J.M. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions // Frontiers in plant science, 2015. – Vol. 6. –A. 558. – P. 1-11.
12. The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon // Nature, 2010. –
Vol. 463. – No. 7282. – P. 763–768.
13. Bakker E.G., Montgomery B., Nguyen B., Eide K. et al. Strong population structure characterizes weediness gene evolution in the invasive grass Brachypodium distachyon // Molecular Ecology, 2009. – Vol. 18. – P. 2588-2601.
14. Vain P., Worland B., Thole V. et al. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis» // Plant Biotechnology Journal, 2008. – Vol. 6. – No. 5. – P. 236–245.
15. Lee M.Y., Yan L., Gorter F.A. et al. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein // Journal of General Virology, 2012. – Vol. 93. – P. 2729–2739.
16. Thole V., Worland B., Wright J. et al. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21, 2010 // Plant Biotechnology Journal. – Vol. 8. – No. 6. – P. 734–747.
17. Huo N., Vogel J., Lazo G. et al. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat, 2009 // Plant Mol. Biol. – Vol. 70. – No. 1-2. – P. 47–61.
18. Goddard R., Peraldi A., Ridout C., Nicholson P. Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare) // Mol. Plant Microbe Interact. – Vol. 27. – No. 10. – P. 1095–1106.
19. Hasterock R., Marasek A., Donnison I. et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosomes landing with fluorescence
in situ hybridisation // Genetics, 2006.
20. Wolny E., Hasterock R. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives // Ann. Bot., 2009. – Vol. 104. – No. 5. – P. 873-881.
21. Gordon S., Priest H., des Marais D. et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines // Plant J., 2014. – Vol. 79. – No. 3. – P. 361-374.
Downloads
How to Cite
Omirbekova, N. Zh., A. I. Zhussupova, Zh. K. Zhunusbayeva, N. D. Deryabina, B. N. Askanbayeva, and B. T. Egiztayeva. 2015. “Brachypodium Distachyon As a Model Plant in Wheat Rust Research”. International Journal of Biology and Chemistry 8 (2):52-55. https://doi.org/10.26577/2218-7979-2015-8-2-52-55.
Issue
Section
Biology
License
ааа